Prepared for: **TALEN MONTANA, LLC** 303 N 28th St., Suite 400 Billings, Montana 59101

WRITTEN CLOSURE PLAN Per Requirements of 40 CFR §257.102

J Cell

Colstrip Steam Electric Station Colstrip, Montana

Prepared by:

Geosyntec Consultants

10211 Wincopin Circle, 4th Floor Columbia, Maryland 21044

Project Number ME1343

July 2016

CERTIFICATION STATEMENT

I, Carrie H. Pendleton, a registered Professional Engineer in the State of Montana (License No. 38837PE), certify that the *Written Closure Plan* and *Design of the Final Cover System* for the *Colstrip Steam Electric Station's J Cell* fulfills the minimum requirements of 40 CFR 257.102(b) Written Closure Plan and 40 CFR 257.102(d)(3) Final Cover System, respectively.

This certification is made in compliance with the specific requirements of 257.102(b)(4) and 257.102(d)(3)(iii).

This certification is based in part on review of reference documentation and data provided to Geosyntec Consultants (Geosyntec) by Talen Montana, LLC (Talen). These references, which are listed below, contain information regarding existing site infrastructure and past operations, which Geosyntec has relied upon (without independent verification of accuracy) for preparation of this certification.

- Bechtel (1982). "Effluent Holding Pond Design Report." Bechtel Power Corporation. October 1982.
- SCG (2014). "J Cell Phase 1 Earthworks Project, PPL-Montana Colstrip Power Plant, Units 3 & 4 EHP Construction Drawings." Summit Consulting Group, March 2014.
- United States Environmental Protection Agency (USEPA) (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule." Title 40 Code of Federal Regulations, Parts 257 and 261.
- United States Geological Survey (USGS) (2014). "Colstrip SE Quadrangle Montana-Rosebud Co. 7.5-Minute Series." Accessed 17 March 2016. <u>http://store.usgs.gov/b2c_usgs/usgs/maplocator/(ctype=areadetails&xcm=r3stand</u> ardpitrex_prd&carea=%24root&layout=6 1 61 48&uiarea=2)/.do
- Womack (2009). "C Cell-Old Clearwell (C/CW) Piezometers and Slope Stability." Womack & Associates, Inc. May 2009.

Geosyntec Consultants

C. H. Pendletar

Carrie H. Pendleton, P.E. Montana P.E. License No. 38837PE

Geosyntec[▷]

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Organization and Terms of Reference	1
	1.2	Site Location	1
	1.3	Site Description	1
2.	CCF	R RULE REQUIREMENTS FOR WRITTEN CLOSURE PLAN	3
	2.1	Written Closure Plan Requirements per §257.102(b)	3
	2.2	Compliance with Closure Requirements	3
3.	CLC	OSURE PLAN	5
	3.1	Description of Closure	5
	3.2	Final Cover System Design	5
		3.2.1 Description of Final Cover System	5
		3.2.2 Performance Standard	6
		3.2.3 Drainage and Stabilization of CCR Surface Impoundments	7
		3.2.4 Methods and Procedures for Final Cover System Installation	8
	3.3	Maximum Inventory of CCR	8
	3.4	Maximum Area Requiring a Final Cover	9
	3.5	Closure Schedule	9
	3.6	Notifications, Deed Notations, and Recordkeeping	9
4.	REF	TERENCES	11

LIST OF FIGURES

Figure 1 – J Cell Location Map

Figure 2 – Site Layout

Figure 3 – Conceptual Closure Design

LIST OF APPENDICES

Appendix A – Engineering Calculations

Appendix A.1: Final Cover Drainage Layer Analysis

Appendix A.2: Final Cover Settlement Analysis

Appendix A.3: Veneer Slope Stability Analysis

Appendix A.4: Global Slope Stability Analysis

1. INTRODUCTION

1.1 Organization and Terms of Reference

On 17 April 2015, the United States Environmental Protection Agency (USEPA) published the final rule for disposal of coal combustion residuals (CCR) from electric power utilities under Subtitle D of the Resource Conservation and Recovery Act (RCRA), contained in Part 257 of Title 40 of the Code of Federal Regulations (40 CFR 257 Subpart D), referred to herein as the CCR Rule. Geosyntec Consultants (Geosyntec) has prepared this Written Closure Plan (Plan) for Talen Montana, LLC (Talen) to demonstrate the manner in which J Cell, an existing CCR impoundment at the Colstrip Steam Electric Station (CSES), will be closed in compliance with the CCR Rule. Closure requirements for CCR units are specified under §257.102.

This Plan was prepared by Ms. Jennifer Padgett, P.E. and Mr. Mike Nolden, E.I.T., and reviewed in accordance with Geosyntec's internal review policy by Mr. David Espinoza, Ph.D., P.E., Mr. Jeremy Morris, Ph.D., P.E., and Ms. Carrie Pendleton, P.E., all of Geosyntec. Ms. Pendleton is a registered Professional Engineer in the State of Montana.

1.2 <u>Site Location</u>

J Cell is part of the Units 3 and 4 Effluent Holding Pond (EHP) area at the CSES, which is located in Colstrip, Rosebud County, Montana. The location of J Cell is shown on a United States Geological Survey (USGS) 7.5-minute topographic map for the Colstrip Southeast Quadrangle (Figure 1). J Cell is located southeast of the CSES generating facilities.

1.3 <u>Site Description</u>

J Cell is an active unlined CCR surface impoundment within the CSES EHP, which was constructed between 1983 and 1984 to accept CCR such as scrubber effluent and bottom ash from the CSES (Bechtel 1982). The EHP was constructed in the basin between Cow Creek and South Fork Cow Creek, the uppermost rim of which consists of baked and semi-baked shale underlain by sedimentary rock and coal beds (Bechtel 1982). A thin deposit of alluvium and colluvium covers most of the basin floor.

J Cell is bounded by the EHP Main Dam to the north, the EHP Saddle Dam to the northeast and east, and divider dikes to the south and west. The Main and Saddle Dams are zoned earth-fill dams with vertical cores extending to bedrock and sand and gravel drainage zones (Bechtel 1982). The divider dikes are constructed variously of baked shale fill, fly ash, and bottom ash (Womack 2009; SCG 2014).

Although J Cell historically impounded free liquids, it has been operated since 2009 only for the disposal of CCR solids and currently impounds CCR paste and solids without impounding free liquids (Geosyntec 2015). However, because the top surface of CCR paste and solids in J Cell is

Compliance Demonstration Written Closure Plan Colstrip SES J Cell

significantly below surrounding grades, during and following rain events stormwater runoff accumulates in J Cell.

2. CCR RULE REQUIREMENTS FOR WRITTEN CLOSURE PLAN

2.1 Written Closure Plan Requirements per §257.102(b)

As specified under §257.102(b), the Plan prepared for J Cell must describe the steps necessary to close the CCR unit at any point during the active life of the CCR unit consistent with recognized and generally accepted good engineering practices. The Plan must include, at a minimum:

- (i) A narrative description of how the CCR unit will be closed in accordance with §257.102.
- (ii) If closure of the CCR unit will be accomplished through removal of CCR, a description of the procedures to remove the CCR and decontaminate the CCR unit in accordance with paragraph §257.102(c).
- (iii) If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover, designed in accordance with paragraph §257.102(d), and the methods and procedures to be used to install the final cover. The closure plan must also discuss how the final cover will achieve the performance standards specified in paragraph §257.102(d).
- (iv) An estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit.
- (v) An estimate of the largest area of the CCR unit ever requiring a final cover as required by paragraph §257.102(d) at any time during the CCR unit's active life.
- (vi) A schedule for completing all activities necessary to satisfy the closure criteria, including an estimate of the year in which all closure activities will be completed as well as duration of such activities. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including identification of major milestones such as coordinating with and obtaining necessary approvals and permits from other agencies, construction of the final cover, and the estimated timeframes to complete each step or phase of CCR unit closure. If the owner or operator of a CCR unit estimates that the time required to complete closure will exceed the timeframes specified in paragraph §257.102(f)(1)(ii), that is within five years of commencement of closure activities, an extension may be available provided certain standards are met. The schedules should consider the requirements of §257.102(e) (Initiation of Closure Activities) and §257.102(f) (Completion of Closure Activities).

In addition, the owner or operator of the CCR unit must comply with the requirements of \$257.102(g), (h), (i), and (j), which pertain to notification of intent to close, notification of closure, deed notations, and recordkeeping requirements, respectively.

2.2 <u>Compliance with Closure Requirements</u>

The table below summarizes where applicable CCR Rule requirements are addressed in this Plan.

RULE SECTION	RULE REQUIREMENT	LOCATION WHERE ADDRESSED IN DOCUMENT
§257.102(b)(1)(i)	Narrative description of how unit will be closed with CCR in place	Section 3.1
§257.102(b)(1)(ii)	Narrative of how unit will be closed by removal of CCR	Not applicable: J Cell will be closed by leaving CCR in place
	Description of final cover system design	Section 3.2.1
	Discussion of how final cover system will meet performance standard of §257.102(d)(1)	Sections 3.1, 3.2.2, and 3.2.4
§257.102(b)(1)(iii)	Discussion of drainage and stabilization requirements of §257.102(d)(2)	Section 3.2.3
	Description of methods and procedures used to install the final cover system	Section 3.2.4
§257.102(b)(1)(iv)	Estimate of the maximum on-site CCR inventory	Section 3.3
§257.102(b)(1)(v)	Estimate of the largest area of the CCR unit requiring closure	Section 3.4
§257.102(b)(1)(vi)	Closure schedule	Section 3.5
§257.102(g) and §257.102(h)	Closure notifications	CERTIFICATION STATEMENT and Section 3.6
§257.102(i)	Notification of deed notations	Section 3.6
§257.102(j)	Recordkeeping requirements	Section 3.6

3. CLOSURE PLAN

3.1 Description of Closure

Talen has elected to voluntarily close this CCR unit in 2016 under the applicable regulations. Per \$257.102(b)(1)(i), this section provides a narrative description of CCR unit closure. J Cell will be closed by leaving CCR in place, constructing a final alternative cover system over the entire area of the unit, and complying with other applicable requirements of the CCR Rule.

The top surface of CCR paste and solids in J Cell is currently about 30-60 feet below surrounding grades, which results in stormwater runoff into the cell during and following rain events. To minimize infiltration through the J Cell cover system after closure and satisfy the performance standard specified in \$257.102(d)(1)(i), therefore, a protective drainage layer and dewatering system is included in the design of the final cover system as discussed in Section 3.2. As further described in Section 3.2.2, the cover system for J Cell will be protected from erosion damage by the construction of a new CCR unit (J-1 Cell) over J Cell.

Constructing the final cover as described in the remainder of this Plan emphasizes passive management systems (e.g., gravity drainage of liquids in the dewatering system), which will serve to minimize the need for long-term maintenance of J Cell after closure and construction of J-1 Cell. The final cover design thus meets the requirement under §257.102(d)(1)(iv).

Existing conditions at J Cell are illustrated on Figure 2. Details of the J Cell closure design are presented in Figure 3.

3.2 <u>Final Cover System Design</u>

Section 257.102(b)(1)(iii) requires a description of the final cover system designed in accordance with \$257.102(d)(3) and a demonstration of compliance with the performance standards specified in 257.102(d)(1).

3.2.1 Description of Final Cover System

The J Cell final cover will be an alternate cover system designed according to the requirements of 257.102(d)(3)(ii). The composite cover system design includes (from top to bottom):

- 18-inch bottom ash protective drainage layer;
- 8-oz non-woven geotextile cushion;
- 60-mil textured high density polyethylene (HDPE) geomembrane; and
- geosynthetic clay liner (GCL).

The GCL will be installed above a prepared subgrade of CCR paste and bottom ash.

As designed, the proposed final cover system includes a composite infiltration layer comprising an upper geomembrane component and lower GCL component overlain by a bottom ash protective drainage layer. The protective drainage layer provides lateral drainage, which will minimize the head on the geomembrane and limit infiltration through the final cover. The drainage layer will be graded at a 2% slope to drain to a dewatering system, which comprises perforated HDPE liquid collection pipes embedded in protective gravel mounds at 375 feet spacings on the final cover as well as in toe drains at the boundary between J Cell sideslopes and the final cover. Liquids collected in the pipes and toe drains will be conveyed to sumps fitted with riser pipes in which pumps will be operated to remove liquids.

3.2.2 Performance Standard

J Cell will be closed in a manner to minimize, to the extent feasible, post-closure infiltration of liquid into the waste per $\frac{257.102(d)(1)(i)}{(i)}$ by incorporating a low permeability final cover that meets the requirements of $\frac{257.102(d)(3)(ii)}{A}$ through (C).

§257.102(d)(3)(ii)(A) – Reduction in Infiltration

The infiltration layer of the alternate final cover must achieve an equivalent reduction in infiltration as the infiltration layer specified in \$257.102(d)(3)(i)(A), which requires that the permeability of the final cover system be less than or equal to the permeability of the bottom liner or natural subsoils present (or 1 x 10⁻⁵ cm/sec, whichever is less), and \$257.102(d)(3)(i)(B), which requires the use of an infiltration layer that contains a minimum of 18 inches of earthen material.

As J Cell is unlined, the permeability of the final cover must be less than or equal to that of the natural subsoils or 1×10^{-5} cm/sec, whichever is less. However, the permeability of natural subsoils was not established as part of this design because the permeabilities of the geomembrane and GCL used in the final cover are 2×10^{-13} cm/sec and 1×10^{-8} cm/sec, respectively, far lower than the permeability of natural soils. The final cover design thus meets the performance standard under \$257.102(d)(3)(i)(A).

The low permeability of the final cover is achieved through the use of a composite infiltration layer comprising an upper geomembrane component and a lower GCL component overlain by an 18-inch bottom ash protective drainage layer. The Final Cover Drainage Layer Analysis performed by Geosyntec (Appendix A.1) shows that the drainage layer is sufficient to limit the head on the geomembrane liner to the thickness of the drainage layer, which will allow any liquid to flow freely to the dewatering system collection pipes.

\$257.102(d)(3)(ii)(B) - Erosion Protection

The design of the final cover system must include an erosion layer that provides equivalent protection from wind or water erosion as the erosion layer specified in 257.102(d)(3)(i)(C), that is an erosion layer that contains a minimum of six inches of earthen material that is capable of

sustaining native plant growth. As designed, closure of J Cell will be followed by construction of J-1 Cell. The placement of J-1 Cell above the composite infiltration layer for J Cell will protect the J Cell cover system from erosion. As such, the J-1 Cell liner system serves the function of the erosion layer such that the final cover design for J Cell meets this erosion protection performance standard.

§257.102(d)(3)(ii)(C) – Integrity of the Final Cover

The final cover will be constructed of earthen and geosynthetic components that are sufficiently flexible to accommodate local differential settlements and subsidence expected at J Cell, as demonstrated by the settlement analysis by the Final Cover Settlement Analysis performed by Geosyntec (Appendix A.2). As previously demonstrated in Appendix A.1, the proposed grading of the final cover system and design of the lateral drainage layer and dewatering system are such that there will be no unwanted or uncontrolled impounding of water, sediment, or slurry above the final cover, as required by § 257.102(d)(1)(ii). The calculations in Appendix A.2 also demonstrate that the final cover system grades will not be reversed and the lateral drainage layer and dewatering system will continue to perform as designed even after settlement of the underlying waste under the maximum overburden loading from J-1 Cell has occurred. The final cover design thus meets the performance standard in §257.102(d)(3)(ii)(C).

At the time of final cover system construction, quality control and quality assurance measures will be implemented such that the final cover will be constructed as designed and the cover system will maintain major slope stability and integrity throughout the closure and post-closure periods, as required under §257.102(d)(1)(iii). The stability of the final cover system under design conditions is demonstrated by the Veneer Slope Stability Analysis performed by Geosyntec (Appendix A.3). The final cover design thus meets this performance standard.

3.2.3 Drainage and Stabilization of CCR Surface Impoundments

Requirements for draining and stabilizing waste in CCR surface impoundments prior to the construction of the final cover are specified in §257.102(d)(2).

As described in Section 1.2, J Cell was most recently used for CCR solid management and not process water and currently impounds CCR paste and solids without free water liquids. However, during and following rain events, stormwater runoff collects in J Cell. Prior to construction of the final cover, free liquids will be pumped from J Cell in accordance with §257.102(d)(2)(i). Following elimination of free liquids, the Global Slope Stability Analysis performed by Geosyntec (Appendix A.4) demonstrates that the remaining solid wastes will be sufficiently stable to support the final cover system, as required under §257.102(d)(2)(i).

3.2.4 Methods and Procedures for Final Cover System Installation

Section 257.102(b)(1)(iii) requires this Plan to include a description of the methods and procedures to be used to install the final cover system.

During construction, construction quality assurance (CQA) will be performed to verify compliance with this Closure Plan and the CCR Rule. Construction oversight will include the following:

- 1. Observation of the subgrade surface following removal of vegetation and debris and completion of final grading to verify that surface debris is removed prior to subgrade preparation;
- 2. Observation of subgrade preparation, including removal of oversized rocks and rolling of the surface to provide a smooth surface for GCL installation;
- 3. Observation and documentation of geosynthetics installation including verification of material conformance with project requirements prior to installation, verification of proper installation techniques, and verification of geomembrane seam strength using non-destructive and destructive testing;
- 4. Observation and documentation of protective drainage layer placement including verification of material conformance with project requirements prior to and during installation, verification of proper installation techniques, and verification of proper layer thickness; and
- 5. Obtaining necessary documentation of construction, including material conformance information, field forms, laboratory testing of soils and geosynthetics, and as-built surveying.

The methods and materials of construction discussed above were specified such that the final cover meets the performance standard of \$257.102(d)(1)(v). As such, the final cover design and proposed methods and procedures for installation of the final cover are intended to allow completion of closure construction in the shortest amount of time consistent with good engineering practices.

3.3 <u>Maximum Inventory of CCR</u>

The CCR Rule per §257.102(b)(1)(iv) requires that the written closure plan provides an estimate of the maximum inventory of CCR on site over the active life of the CCR unit. J Cell has been in operation since 1983 as an unlined impoundment.

J Cell has an area of 50.8 acres and an estimated maximum waste depth ranging between 30 and 80 feet. Based on this, the maximum inventory of CCR in the unit is estimated to be approximately 9.2 million cubic yards.

3.4 <u>Maximum Area Requiring a Final Cover</u>

The CCR Rule per \$257.102(b)(1)(v) requires that the written closure plan provides an estimate of the largest area of the CCR unit requiring final cover at any one time in the CCR unit's active life.

The entirety of J Cell is to be closed by the installation of a single final cover constructed all at one time. The final cover will provide closure of approximately 57.1 acres.

3.5 <u>Closure Schedule</u>

The CCR Rule per §257.102(b)(1)(vi) requires the written closure plan to include a schedule for completing all activities necessary to satisfy the closure criteria, including an estimate of the year in which all closure activities will be completed as well as the duration of such activities.

J Cell closure is scheduled to begin in the summer of 2016. It is expected that the final receipt of CCR in the unit will be immediately prior to commencement of closure construction. Closure activities will commence within 30 days of the known final receipt of waste in accordance with §257.102(e)(1)(i). Closure activities are expected to be completed by the end of 2016, which is within the timeframe required by §257.102(f)(1)(i).

The conceptual schedule below lists major milestones expected during closure activities. The estimated times to reach each milestone, starting from the commencement of closure activities, are included.

Milestone	Maximum Allowable Time for Completion
Final Closure System Design	Prior to Commencing Closure
Commencement of Closure System Construction Activities	Within 30 days of final receipt of CCR
Complete Construction of Closure System	Within 5 years of commencing closure

3.6 <u>Notifications, Deed Notations, and Recordkeeping</u>

The owner or operator of the CCR impoundment must comply with the requirements of §257.102(g) through (j), which pertain to notification of intent to close, notification of closure, deed notations, and recordkeeping requirements, respectively. Key dates and milestones that will be observed in order to comply with these requirements include the following

- 1. Notification of Intent to Close: This notification must be placed in the operating record no later than the date the owner or operator initiates closure of a CCR unit. The notification must include the certification required in §257.102(d)(3)(iii), which is provided at the front of this Plan.
- 2. Notification of Closure: The notification must be placed in the operating record within 30 days of completion of closure of the CCR unit. As required in §257.102 (f)(3), the notification must include certification from a qualified professional engineer verifying that closure has been completed in accordance with this Plan.
- 3. Deed Notation: No timing is specified for recording notations on the deed to the property (or similar instrument) following closure. Within 30 days of recording a notation on the deed to the property, however, the owner or operator must prepare a notification stating that the notation has been recorded. The owner or operator has completed the notification when it has been placed in the facility's operating record.
- 4. Closure Recordkeeping Requirements: The owner or operator of the CCR unit must comply with the closure recordkeeping requirements specified in §257.105(i), the closure notification requirements specified in §257.106(i), and the closure Internet requirements specified in §257.107(i). The timing for compliance with §257.105(i) is specified only in terms of placing required information in the facility's operating record (as required in §257.102). The timing for compliance with §257.106(i) and §257.107(i) is triggered by fulfilment of §257.105(i).

4. **REFERENCES**

- Bechtel (1982). "Effluent Holding Pond Design Report." Bechtel Power Corporation. October 1982.
- Geosyntec (2015). "Master Plan for Coal Combustion Residual Waste Management Systems, Colstrip Steam Electric Station." Geosyntec Consultants, Inc. 6 November 2015.
- SCG (2014). "J Cell Phase 1 Earthworks Project, PPL-Montana Colstrip Power Plant, Units 3 & 4 EHP Construction Drawings." Summit Consulting Group, March 2014.
- United States Environmental Protection Agency (USEPA) (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule." Title 40 Code of Federal Regulations, Parts 257 and 261.
- United States Geological Survey (USGS) (2014). "Colstrip SE Quadrangle Montana-Rosebud Co. 7.5-Minute Series." Accessed 17 March 2016. <u>http://store.usgs.gov/b2c_usgs/usgs/maplocator/(ctype=areadetails&xcm=r3standardpitrex_p</u> <u>rd&carea=%24root&layout=6 1 61 48&uiarea=2)/.do</u>
- Womack (2009). "C Cell-Old Clearwell (C/CW) Piezometers and Slope Stability." Womack & Associates, Inc. May 2009.

FIGURES

APPENDIX A

Engineering Calculations

APPENDIX A.1

Final Cover Drainage Layer Calculations

Geosyntec[▷]

consultants

COMPUTATION COVER SHEET

Client: Talen Montana, LCC Proj	ect:	EHP J Cell	Project #: ME13	43 Task #: 01
G TITLE OF COMPUTATIONS	ENERATI YSTEM FO	ON RATE OF IMPO DR J CELL (HELP M	UNDMENT WAT ODEL)	ER ABOVE COVER
COMPUTATIONS BY:	Signature	Dichangl	5	05/24/2016 DATE
	Printed Name and Title	Zichang Li Staff Engineer		
ASSUMPTIONS AND PROCEDURES CHECKED BY: (Peer Reviewer)	S Signature	Ch	<u> </u>	05/25/2016 DATE
	Printed Name and Title	Chunling Li Project Engineer		
COMPUTATIONS CHECKED BY:	Signature	fre		05/31/2016 DATE
COMPUTATIONS	Printed Name and Title Signature	Mohammad AI-Qur Staff Engineer	aan	05/31/2016
BACKCHECKED BY: (Originator)	Printed Name and Title	Zichang Li Staff Engineer		DATE
APPROVED BY: (PM or Designate)	Signature	Aun		07/06/2016 DATE
APPROVAL NOTES:	Printed Name and Title	Senior Principal		
REVISIONS (Number and initial all re	visions)			
NO. SHEET DAT	TE	BY C	CHECKED BY	APPROVAL

ME1210/.../ ME1210-J Cell Infiltration Generation_20160706.doc

Geosyntec [▷]		Written by:	Zichang Li	Date:	05/24/2016		
	consultants		Reviewed by:	David Espinoza	Date: 07/06/2016		
Client:	Talen	Project:	EHP.	J Cell Project No.:	ME1343	Task No.:	1

GENERATION RATE OF IMPOUNDMENT WATER ABOVE COVER SYSTEM FOR J CELL (HELP MODEL)

OBJECTIVE

The objective of this calculation package is to evaluate the generation rate of impoundment water and the potential water head above the cover system for J Cell, and the infiltration through the J Cell cover system at the Colstrip Steam Electric Station (CSES) in Colstrip, Rosebud County, Montana. The Hydrologic Evaluation of Landfill Performance (HELP) Version 3.07 [USEPA, 1994] computer program was used to aid the analysis.

ASSUMPTIONS AND METHOD

The top surface of CCR paste and solids in J Cell is currently about 30-60 feet below surrounding grades, which results in stormwater runoff into the cell during and following rain events. To minimize infiltration through the J Cell cover system after closure, a protective drainage layer and dewatering system is included in the design of the cover system for J Cell. Following completion of J Cell closure, Talen proposes to construct a new CCR Rule-compliant surface impoundment, designated as J-1 Cell, as a surface impoundment overfill directly above J Cell.

Analysis of potential infiltration through the J Cell Cover System is performed in this analysis. Figure 1 shows the grades of the cover system for J Cell (also being the base grades of the liner system for J-1 Cell). This calculation package evaluates the water head above the J Cell cap drainage system and the infiltration rate through the J Cell cap drainage system by considering the four operating conditions of overlying J-1 Cell, which include: open cell, daily fill, intermediate fill and final grade as shown in Figure 2. Prior to construction of the final cover for J-1 Cell, the water infiltration through the placed CCR waste will still occur in other sub-cells of J-1 Cell achieving the final grade condition. Therefore, the J-1 final grade condition is considered in this analysis. Figure 3 shows the final grades of J-1 Cell. In modeling these different conditions using the HELP program, the assumptions summarized in the following paragraph are made.

• The HELP model calculates a per acre rate of water collected from the cap drainage system. Because the amount of infiltration collected in the cap drainage system is directly proportional to the area, the per-acre value calculated by the HELP model is multiplied by the area to estimate water generation above the cap drainage system for the entire site.

Geosyntec ^D		Written by:	Zichang Li	Date:	05/24/2016		
	consultan	ts	Reviewed by:	David Espinoza	Date:	07/06/2016	
Client:	Talen	Project:	EHP J Ce	II Project No.:	ME1343	Task No.:	1

INPUT DATA

The input data in the HELP model is classified into site/design specific data such as the layering configuration and material properties, and location specific data such as climatic data. For both types of input data properties, HELP offers the option of using default values or user defined values. Each set of input data is described in the following sections.

Weather Data

The HELP model requires the following weather-related input data: (i) evapotranspiration, (ii) precipitation, (iii) temperature, and (iv) solar radiation data. The HELP model provides default values and synthetically generated weather data for specific cities in the United States. The closest city to the site available in the HELP program, Billings, Montana, is selected for weather data input. Weather data is synthetically generated for a 30-year period.

The HELP default values for evaporation zone depths are used for defining Leaf Area Index (LAI). LAI is a dimensionless ratio of the leaf area that is actively transpiring vegetation to the nominal surface area of the land on which the vegetation is growing. For open cell, daily fill, and intermediate fill, no soil is used to cover the placed CCR waste at J-1 Cell, leading to a default value of 12 inches (in). Before constructing the final cover for J-1 Cell, the landfill at the final grade condition is conservatively assumed to support a poor stand of grass, leading to a default evaporation zone depth of 15 in. According to the HELP manual, the default LAI of 0.0 ("Bare" condition of vegetation) is used for the conditions of open cell, daily fill and intermediate fill. For final grade condition, the default LAI of 1.0 ("Poor Stand of Grass" condition of vegetation) is used for the project location.

Soil, Waste, and Geosynthetic Material Data

The cover system design for J Cell considered in the analysis is:

- 18 in bottom ash layer (protective cover) with hydraulic conductivity of 9.7×10^{-3} cm/s;
- Geotextile cushion;
- 60 mil high density polyethylene (HDPE) geomembrane;
- Geosynthetic Clay Liner (GCL);
- 70 ft compacted paste with hydraulic conductivity of 1.89×10^{-4} cm/s.

Geosyntec		Written by:	Zichang Li	Date:	05/24/2016		
	consultants		Reviewed by:	d by: David Espinoza		07/06/2016	
Client:	Talen	Project:	EHP J Cell	Project No.:	ME1343	Task No.:1	

Waste

Soil texture number 30 (coal-burning electric plant fly ash) was chosen for the placed CCR waste. The default saturated hydraulic conductivity, 5×10^{-5} cm/s, is used to conservatively estimate the infiltration rate.

Daily and Intermediate Cover Soils

No cover soil is used when disposing of paste in the impoundment; therefore, no additional cover layer is included in the design.

Bottom Ash Protective/Drainage Layer

The 18 in bottom ash protective/drainage layer is designed to protect the liner and to convey liquids infiltrating through waste and collecting above the HDPE geomembrane. It is modeled as a drainage layer, using material texture number 31 (coal-burning electric plant bottom ash). The laboratory tests presented in Attachment 1 show that the saturated hydraulic conductivity of the bottom ash is 9.7×10^{-3} cm/s.

Geomembrane Liner

The geomembranes used for the base liner is 60-mil (0.06 in) HDPE geomembrane. The geosynthetic material number chosen for the HELP simulation is 35. The geomembrane liner is modeled conservatively as having a pinhole density of five pinholes per acre, and are conservatively assumed to have a poor placement quality.

Subbase (Ash Paste)

Based on the field geotechnical investigation performed by Geosyntec Consultants in June 2015, the ash paste at J Cell is estimated to be 50 ft thick. The laboratory tests presented in Attachment 2 show that the hydraulic conductivity of the compacted ash paste is 1.89×10^{-4} cm/s.

Surface Data

HELP models the surface runoff using the Soil Conservation Service (SCS) curve number method. HELP uses the surface slopes, lengths, soil type, and vegetative cover to determine a runoff curve number, which is used for runoff calculations. The surface characteristics vary

Geosyntec [▷]		Written by:	Zichang Li	Date:	05/24/2016		
	consultan	ts	Reviewed by:	David Espinoza	Date:	07/06/2016	
Client:	Talen	Project:	EHP J Cel	Project No.:	ME1343	Task No.: 1	<u> </u>

depending upon the cell conditions. For open cell, daily fill and intermediate fill conditions, it is conservatively assumed that no runoff (0 %) is occurred. For final grade condition, 100 percent runoff is assumed as a positive drainage slope is achieved. The conditions used for this analysis are shown in Table 1.

Condition	Surface Slope (%)***	Surface Slope Length (ft)	Soil Texture	Vegetative Cover	Percent Possible Runoff	Runoff Curve Numbers
Onon Call	2	375	21	Bare	0	96.8
Open Cen	33	190	51	Ground	0	97.1
Daily Fill (10 ft paste daily fill)	0.6^{*}	375	30	Bare Ground	0	96.7
Intermediate Fill (100 ft paste)	0.6^{*}	375	30	Bare Ground	0	96.7
Final Grade	2.5**	150	30	Poor Strand of Grass	100	96.8

Table 1. Surface Condition and Runoff Curve Numbers

Note: * Minimum input accepted in HELP; ** Design drainage slope for final grade condition; *** Rounded inputs showed in the HELP outputs (Attachment 3), e.g. 0.6% being 1.% and 2.5% being 2.% in the result notes.

Drainage Distance and Slope

According to the base grading plan shown in Figure 1, the base grades will be constructed to have a drainage slope of 2 percent in the base of J-1 Cell. After the settlement of subsurface materials beneath the cap drainage system, the base of J-1 Cell was calculated to be 1.5 percent. Therefore, a drainage slope of 1.5 percent is used for the base of J-1 Cell for daily fill condition based on the subsurface settlement analysis. To be conservative, a drainage slope of 1.0 percent is assumed for intermediate fill condition and a drainage slope of 0.9 percent is assumed for final grade condition in the analysis. A drainage slope of 33 percent is used for the sideslopes. Inside of the cell, the maximum drainage distance is 375 ft in the base of the cell and 190 ft on the sideslopes. For daily fill and intermediate fill conditions, the surface slope of the placed CCR waste is conservatively assumed to be 0.6 percent, the minimum input value allowed in HELP. The drainage distance of the surface slope is also assumed to be 375 ft. As shown in Figure 3 the surface slope for final grade condition on the majority of the landfill is approximately 33 percent with a maximum drainage length of approximately 150 ft. The design slope at the top surface is 2.5 percent, which is the minimum slope

Geosyntec [▷]		Written by:	Zichang Li	Date:	05/24/2016		
	consultants		Reviewed by:	y: David Espinoza		ate: 07/06/2016	
Client:	Talen	Project:	EHP J Cell	Project No.:	ME1343	Task No.:	l

required to achieve a satisfied positive drainage slope (not less than 2 percent) after the settlement of the placed CCR waste following the J-1 Cell closure. Given that the sideslopes are steeper than 2.5 percent, modeling the entire cover areas as having a slope of 2.5 percent in the water infiltration calculation yields a conservative design.

HELP MODEL RESULTS

Water Generation above Cap Drainage System

HELP simulation outputs for the four cell conditions are included as Attachment 3. The peak daily average water head above the cap drainage system for the four cell conditions are summarized in Table 2. As shown in Table 2, at all times the head above liner is less than 18 inches, the thickness of the bottom ash drainage layer. The maximum monthly water generation rate for the four cell conditions are summarized in Table 3.

Condition	Drainage	Drainage	Water Head above the Cap
Condition	Slope (%)	Distance (ft)	Drainage System (in)
Open Cell	2	375	8.9
Open Cen	33	190	7.0
Daily Fill (10 ft paste daily fill)	1.5*	375	2.8
Intermediate Fill (100 ft paste)	1.0*	375	1.1
Final Grade	0.9*	375	0.8

Table 2. Water Head above the Cap Drainage System

Note: * Drainage slope after settlement of subsurface materials.

Table 3. Maximum Monthly Water Volume above Cap Drainage System

Condition	Drainage Slope (%)	Drainage Distance (ft)	Paste of daily Fill (ft)	Maximum Monthly Water Volume (in.)
Open Cell	2	375	0	0.17
Open Cen	33	190	0	0.55
Daily Fill	1.5	375	10	0.05
Intermediate Fill	1.0	375	100	0.03
Final Grade	0.9	375	210	0.02

Geosyntec [▷]			Written by:	Zichang Li	Date:	05/24/2016	
	consultants		Reviewed by: David Espinoza		Date:	07/06/2016	
Client:	Talen	Project:	EHP J (Cell Project No.:	ME1343	Task No.:	1

HELP model outputs for water infiltration volume impingement are given in units of inches per acre per month. Calculation of the yearly infiltration water volume estimate begins with conversion of the HELP output into units of gallons per month per acre. The following equation is used for the unit conversion:

 $\frac{\text{acre-in. per acre}}{\text{month}} \times \frac{43,560 \text{ft}^2}{\text{acre}} \times \frac{\text{ft}}{12 \text{in.}} \times \frac{7.48 \text{gal.}}{\text{ft}^3} = \frac{\text{gal.}}{\text{month acre}}$

Considering the various combinations of the cell conditions for each landfill cell, the total infiltration water generation rates for J Cell are calculated and provided in Attachment 4. The maximum monthly and annual water generation volumes above the cap drainage system for the entire J Cell are summarized in Table 4.

Table 4. Infiltration Water above the Cover System for J Cell.

Water Generation above the Cover System for J Cell	Volumes
Maximum Monthly Generation (gal/mon)	310,827
Average Daily Generation in max. month (gal/day)	10,191
Maximum Annual Infiltration Water Generation (gal/year)	873,553
Average Daily Generation in max. year (gal/day)	2,393

Water Infiltration through Cap System for J Cell

Considering the various combinations of cell conditions for each landfill cell, the total water infiltration through the Cap System for J Cell for the four conditions are calculated and provided in Attachment 5. The maximum annual water infiltration through the Cap System for J Cell is expected to occur when J-1 Cell is open for placing CCR waste. The maximum annual infiltration water and average daily are summarized in Table 5.

Table 5. Water Infiltration through the Cap System for J Cell.

Water through Cap System for J Cell	Volumes
Maximum Annual Infiltration Water Generation (gal/year)	465
Average Daily Generation in max. year (gal/day)	1.27

Geosyntec			Written by:	Zichang Li	Date:	ate: 05/24/2016	
	consultants		Reviewed by:	iewed by: David Espinoza		07/06/2016	
Client:	Talen	Project:	EHP J C	Cell Project No.:	ME1343	Task No.:	1

REFERENCES

Schroeder, P. Rs., Aziz, N. M., Lloyd, C. M. and Zappi, P. A. (1994). "The Hydrologic Evaluationa of Landfill Performance (HELP) Model: User's Guide for Version 3," EPA/600/R-94/168a, September 1994, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.

FIGURES

(a) Open cell (base grade)

(b) Daily fill

Figure 2. Operating Conditions Considered in the Analysis.

Figure 2 (continued). Operating Conditions Considered in the Analysis.

LEGEND

3016	EXISTING GRADE CONTOUR (FEET-MSL)
3290	PROPOSED GRADE CONTOUR (FEET-MSL)
=====	EXISTING ROAD / DRIVE
	EXISTING STRUCTURE
Marrie and a second sec	EXISTING TREELINE

VOLUME SCHEDULE						
CELL	VOLUME (C.Y.)					
В	2,750,000					
С	6,350,000					
F	4,950,000					
Н	3,750,000					
J	8,000,000					
TOTAL	25,800,000					

PROPOSED CAP GRADES ARE 3% FOR CELLS B, C, F, H AND 3H: 1V FOR CELL J.

CONCEPTUAL FINA COLSTRIP SITE COLSTRIP COLSTRIP,	AL GRA 3 ASH P LANDFILL MONTANA	DING PL onds	_AN
	DATE:	SEPTEMBER	2014

Geosyntec [▷]	
consultants	

COLUMBIA, MARYLAND

DATE:	SEPTEMBER 2014
PROJECT NO	D. ME1343
DOCUMENT	NO.
FILE NO.	1132f003
FIGURE NO.	3

ATTACHMENT 1

Laboratory Permeability Result of Bottom Ash

Rigid Wall Constant Head Permeability

Client: Geosyntec Consultants

Project: Colstrip Eletric Plant

TRI Log#: E2391-90-07

etric Plant

Test Method: ASTM D 2434

Sample: Bottom Ash - Tamp in Place

Test Date: 01/22/16

Manometer Reading (cm)		Gradient	Flow Volume, O (ml)	Flow Time, t (s)	Temperature (°C)	Flow Rate (cm ³ /s)	Velocity, Q/At (cm/s)	System Permeability (cm/s)	System Permeability @ 20 °C, K _{20°C}	Average System Permeability @ 20 °C		
	1	2		Q ()					(CIII/5)	(cm/s)	(cm/s)	
Gradient No. 1												
	3.4	0	0.45	54	300	19.2	0.2	3.9E-03	8.8E-03	9.0E-03	8.6E-03	
	3.4	0	0.45	49	300	19.2	0.2	3.6E-03	8.1E-03	8.3E-03		
						Grad	lient No. 2					
	4.9	0	0.65	99	300	19.3	0.3	7.2E-03	1.1E-02	1.1E-02	1.1E-02	
	4.9	0	0.65	94	300	19.3	0.3	6.9E-03	1.1E-02	1.1E-02		
Gradient No. 3												
	9.0	0	1.18	157	300	19.4	0.5	1.1E-02	9.7E-03	9.9E-03	0.45.02	
	9.0	0	1.18	139	300	19.3	0.5	1.0E-02	8.6E-03	8.8E-03	9.4E-03	

Specimen Cross-sectional Area, A (cm²):

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.00

Velocity,

Q/At

(cm/sec)

45.6

 \diamond

 \diamond

1.00

 \otimes

Gradient

 \otimes

0.50

Final Avg. k at 20 deg C (cm/sec) :

9.7E-03

Note: Soil specimen was tamped in place per test request.

Jeffrey A. Kuhn, Ph.D., P.E., 2/2/2016

Quality Review/Date Tested by: KH

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

ATTACHMENT 2

Laboratory Permeability Result of Condensed Paste at J Cell

Constant Head Hydraulic Conductivity ASTM D 5084

Date:	Augu	ıst 1, 2015	SK Project:	15-3361L Laboratory Testing Geosyntec Consultants, Inc. Proj#ME1210 Colstrip SES, J Cell, Colstrip, Montana	
Client: Mr. Geo 821 Aus		Ranjiv Gupta, PhD, PE yntec Consultants, Inc. Shoal Creek Blvd, Suite 200 in, Texas 78757	Copies:	Vinay Krishnan, EIT, Geosyntec, Inc.	
Sample no Sampled b Date samp	.: y: led:	GB-1 15-17.5' client 6/29-7/1/15	Received: Tested by: Date tested:	7/1/15 DNF,JBD/SKG 7/20-7/31	

Description: Silt Paste, fine to medium, grey, saturated, very dense

Sample Type: Undisturbed Shelby thinwall tube

Average Diameter:	2.871	"
Average Height:	4.003	"
Moisture:	44.3	%
Moist Unit Weight:	110.4	pcf

Run #	Pressure Head (h), psi	Flow Volume (Q), cc	Flow Time (t), sec	Hydraulic Conductivity (k), cm/s
1	5.0	1843.1	7200	1.77E-04
2	5.0	4058.6	14400	1.95E-04
3	5.0	7542.2	28800	1.82E-04
4	5.0	16518.5	57600	1.99E-04
5	5.0	24917.1	86400	2.00E-04

Average Hydraulic Conductivity (k):1.91E-04

Remarks: Permeability and porosity in practice are sensitive to several other material properties, and conditions, in the field and lab. No individual lab property of a material can substitute for overall best practices in geotechnical design, construction, and field testing by qualified professionals.

DEISC DOER Joe B. DeBar, PE

Materials Lab Manager

Constant Head Hydraulic Conductivity ASTM D 5084

Date:	Augu	ist 1, 2015	SK Project:	15-3361L Laboratory Testing Geosyntec Consultants, Inc. Proj#ME1210 Colstrip SES, J Cell, Colstrip, Montana	
Client: Mr. Geo 821 Aus		Ranjiv Gupta, PhD, PE yntec Consultants, Inc. Shoal Creek Blvd, Suite 200 n, Texas 78757	Copies:	Vinay Krishnan, EIT, Geosyntec, Inc.	
Sample no. Sampled b Date samp	.: y: led:	GB-2 10-12' client 6/29-7/1/15	Received: Tested by: Date tested:	7/1/15 DNF,JBD/SKG 7/20-7/31	

Description: Silt Paste, fine to medium, grey, moist, very dense

Sample Type: Undisturbed Shelby thinwall tube

Average Diameter:	2.870	"
Average Height:	4.346	"
Moisture:	43.5	%
Moist Unit Weight:	112.2	pcf

Run #	Pressure Head (h), psi	Flow Volume (Q), cc	Flow Time (t), sec	Hydraulic Conductivity (k), cm/s
1	5.0	1661.5	7200	1.74E-04
2	5.0	3657.1	14400	1.91E-04
3	5.0	7394.1	28800	1.93E-04
4	5.0	14396.4	57600	1.88E-04
5	5.0	21394.1	86400	1.86E-04

Average Hydraulic Conductivity (k): 1.87E-04

Remarks: Permeability and porosity in practice are sensitive to several other material properties, and conditions, in the field and lab. No individual lab property of a material can substitute for overall best practices in geotechnical design, construction, and field testing by qualified professionals.

DEISC DOER Joe B. DeBar, PE

Materials Lab Manager

ATTACHMENT 3

HELP Output

ME1210/.../ ME1210-J Cell Infiltration Generation_20160706.docx

DA1JC020

^		
********	*******	*******
********	*******	*******
**		**
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
**		**
*******	************	*******
*****	******	*******

PRECIPITATION DATA FILE:	C:\HELP3\J\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\J\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\J\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\J\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\J\DA1JC020.D10
OUTPUT DATA FILE:	C:\HELP3\J\DA1JC020.OUT

TIME: 17:29 DATE: 5/31/2016

TITLE: Colstrip, Base Grading, 2.00% slope, 375'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 2 - LATERAL DRAINAGE LAYER

Page 1

DA1JC020 MATERIAL TEXTURE NUMBER 31 THICKNESS = 18.00 INCHES POROSITY = 0.5780 VOL/VOL

		0.5700		
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT	=	0.0250	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1194	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.41000002	2000E-02	CM/SEC
SLOPE	=	2.00	PERCENT	
DRAINAGE LENGTH	=	375.0	FEET	

LAYER 2

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

	OILE	Nonbert 35
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	5.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	4 - POOR

LAYER 3

TYPE 3 -	BARRIER	SOIL LINER		
MATERIAL	TEXTURE	NUMBER 17		
THICKNESS	=	0.24	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CON	ITENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. CC	ND. =	0.30000003	3000E-08	CM/SEC

LAYER 4

DA1JC020

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER Ø
THICKNESS	=	840.00 INCHES
POROSITY	=	0.5010 VOL/VOL
FIELD CAPACITY	=	0.2840 VOL/VOL
WILTING POINT	=	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2840 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.188999998000E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #31 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 375. FEET.

SCS RUNOFF CURVE NUMBER	=	96.80	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	1.122	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	6.936	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.300	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	240.886	INCHES
TOTAL INITIAL WATER	=	240.886	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES

A\ A\ A\ A\ A\	/ERAGE ANNUAI /ERAGE 1ST QI /ERAGE 2ND QI /ERAGE 3RD QI /ERAGE 4TH QI	DA: L WIND SPEED JARTER RELATI JARTER RELATI JARTER RELATI JARTER RELATI	1JC020 VE HUMIDITY VE HUMIDITY VE HUMIDITY VE HUMIDITY	= 11.30 M = 59.00 % = 54.00 % = 47.00 % = 58.00 %	IPH 5 5 5	
NOTE:	PRECIPITAT: COEFFICI	ION DATA WAS ENTS FOR B	SYNTHETICALL ILLINGS	Y GENERATED MONT) USING ANA	
	NORMAL MI	EAN MONTHLY P	RECIPITATION	(INCHES)		
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
0.97 0.85	0.71 1.05	1.05 1.26	1.93 1.16	2.39 0.85	2.07 0.80	
NOTE:	TEMPERATURI COEFFICII	E DATA WAS SY ENTS FOR B	NTHETICALLY ILLINGS	GENERATED L MONT	USING TANA	
NC	ORMAL MEAN MO	ONTHLY TEMPER	ATURE (DEGRE	ES FAHRENHE	IT)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
20.90 72.30	28.40 70.30	33.80 59.40	44.60 49.30	54.90 35.00	64.00 27.10	
NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA AND STATION LATITUDE = 45.80 DEGREES						
*****	*********	*****	*****	*******	******	
AVERAG	E MONTHLY V	ALUES IN INCH	IES FOR YEARS	1 THROL	IGH 30	
	،رد رد	AN/JUL FEB/A	UG MAR/SEP	APR/OCT M	IAY/NOV JUN/DEC	
		Pa	age 4			

PRECIPITATION		DA1JC02	20					DA1	JC02	20			
TOTALS	0.96 1.09	0.78 1.02	0.95 1.23	1.77 1.13	2.26 0.92	2.05 0.82	AVERAGES OF MO	NTHLY AVER	AGED	DAILY HEA	DS (INCHE	ES)	
STD. DEVIATIONS	0.49	0.41	0.48	0.90	0.98	0.81							
	0.59	0.66	0.86	0.69	0.59	0.43	DAILY AVERAGE HEAD ON TOP OF	F LAYER 2					
RUNOFF							AVERAGES 3	1559 2.93 3692 4 1	329	2.7925	3.5841 3.7563	4.472	5 4.4934 3 5020
TOTALS	0.000	0.000	0.000	0.000	0.000	0.000		JUJZ 4.1		5.5050	5.7505	5.051	5.5020
	0.000	0.000	0.000	0.000	0.000	0.000	STD. DEVIATIONS 1.	1125 1.03 7091 1.59	338 924	0.9719 1.4716	1.0918 1.3409	1.6522	2 1.7186 8 1.1429
STD. DEVIATIONS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	***********	******	****	*****	*******	******	*****
EVAPOTRANSPIRATION													
	0.604	0 400	0 750	4 700	2 012	1 020	****	• • • • • • • • • • • • • •	ب ب ب ب	••••••••••••••••••••••••••••••••••••••	به مله مله مله مله مله مله مله مله مله م		• • • • • • • • • • • • • •
TUTALS	0.694	0.490	0.753	0.946	2.012	1.929 0.610	******	* * * * * * * * * * * *	* * * *	****	* * * * * * * * * *	******	* * * * * * * * * * * * *
	11220	01925	110/0	012.0	01001	01010	AVERAGE ANNUAL TOTALS &	(STD. DEVI	ATIO	NS) FOR YE	ARS 1	THROUGH	H 30
STD. DEVIATIONS	0.242	0.273	0.390	0.703	0.702	0.658							
	0.639	0.600	0.751	0.535	0.467	0.265		IN	CHES		CU. FEE	T	PERCENT
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 1					PRECIPITATION	14.97	(2.581)	54346	5.0	100.00
TOTALS	0.1212	0.1027	0.1073	0.1332	0.1718	0.1670	RUNOFF	0.000	(0.0000)	ę	9.00	0.000
	0.1678	0.1586	0.1452	0.1443	0.1350	0.1345			``	,			
							EVAPOTRANSPIRATION	13.219	(1.9061)	47983	8.83	88.293
STD. DEVIATIONS	0.0427	0.0364	0.0373	0.0406	0.0635	0.0639		1 6007	<i>- (</i>	0 52245)	6120	2 211	11 27009
	0.0057	0.0012	0.0347	0.0515	0.0458	0.0435	FROM LAYER 1	1.00070	5 (0.52545)	0130	0.211	11.2/990
PERCOLATION/LEAKAGE 1	HROUGH LAYE	R 3						0 0025	5 (0 00105)	c	200	0 01700
TOTALS	0.0002	0.0001	0.0001	0.0002	0.0003	0.0003	LAYER 3	0.0025	5 (0.00105)		.290	0.01/05
101/120	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002							
							AVERAGE HEAD ON TOP	3.727	(1.153)			
STD. DEVIATIONS	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	OF LAYER 2						
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		0 0025	, (0 00152)	c	138	0 01682
PERCOLATION/LEAKAGE 1	THROUGH LAYE	R 4					LAYER 4	0.0025	- (0.00132)	-	.150	0.01002
TOTALS	0.0001	0.0001	0.0002	0.0004	0.0001	0.0004	CHANGE IN WATER STORAGE	0.061	(1.0218)	222	2.77	0.410
	0.0003	0.0004	0.0000	0.0002	0.0001	0.0001							
	0,0000	0.0000	0.0000	0 0011	0.0000	0.0011	***************************************	********	****	******	******	******	*******
SID. DEVIALIUNS	0.0010	0.0000	0.0008	0.0001	0.0006	0.0006							

Page 5

DA1JC020		
**************************************	1 TUPOUCU	***************************************
PEAR DAILY VALUES FOR TEARS	(TNCHES)	(CIL ET)
PRECIPITATION	1.75	6352,500
RUNOFF	0.000	0.0000
DRAINAGE COLLECTED FROM LAYER 1	0.01100	39.92551
PERCOLATION/LEAKAGE THROUGH LAYER 3	0.000023	0.08404
AVERAGE HEAD ON TOP OF LAYER 2	8.876	
MAXIMUM HEAD ON TOP OF LAYER 2	13.563	
LOCATION OF MAXIMUM HEAD IN LAYER 1 (DISTANCE FROM DRAIN)	88.4 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.003148	11.42720
SNOW WATER	1.43	5192.0435
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	3595
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0250
*** Maximum heads are computed using M	McEnroe's equa	tions. ***
Reference: Maximum Saturated Dept by Bruce M. McEnroe, U ASCE Journal of Enviro Vol. 119, No. 2, March	th over Landfi University of onmental Engir h 1993, pp. 26	ll Liner Kansas meering 22-270.
*********	******	******
******	*****	*****
Page 7		

DA1JC020						
FINAL WATER	STORAGE AT	END OF YEAR 30				
LAYER	(INCHES)	(VOL/VOL)				
1	3.7363	0.2076				
2	0.0000	0.0000				
3	0.1800	0.7500				
4	238.5585	0.2840				
SNOW WATER	0.252					

DA1JC330

* * * * * * * * * * * * * * * * * * * *	**
***************************************	**
*	**
*	**
* HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE *	**
* HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) *	**
* DEVELOPED BY ENVIRONMENTAL LABORATORY *	**
* USAE WATERWAYS EXPERIMENT STATION *	**
* FOR USEPA RISK REDUCTION ENGINEERING LABORATORY *	**
*	**
*	**
***************************************	**
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	بد با

PRECIPITATION DATA FILE:	C:\HELP3\J\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\J\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\J\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\J\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\J\DA1JC330.D10
OUTPUT DATA FILE:	C:\HELP3\J\DA1JC330.OUT

TIME: 17:34 DATE: 5/31/2016

TITLE: Colstrip, Base Grading, 33.0% slope, 190'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 2 - LATERAL DRAINAGE LAYER

Page 1

DA1JC330 MATERIAL TEXTURE NUMBER 31

=	18.00 INCHES
=	0.5780 VOL/VOL
=	0.0760 VOL/VOL
=	0.0250 VOL/VOL
=	0.0877 VOL/VOL
=	0.410000002000E-02 CM/SEC
=	33.00 PERCENT
=	190.0 FEET

LAYER 2

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

	OILE	NONDER 33
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	5.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	4 - POOR

LAYER 3

TYPE 3 -	BARRIER	SOIL LINER		
MATERIAL	TEXTURE	NUMBER 17		
THICKNESS	=	0.24	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CON	ITENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. CC	ND. =	0.30000003	3000E-08	CM/SEC

LAYER 4

DA1JC330

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER Ø
THICKNESS	=	840.00 INCHES
POROSITY	=	0.5010 VOL/VOL
FIELD CAPACITY	=	0.2840 VOL/VOL
WILTING POINT	=	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2840 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.188999998000E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #31 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 33.% AND A SLOPE LENGTH OF 190. FEET.

SCS RUNOFF CURVE NUMBER	=	97.10	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	1.122	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	6.936	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.300	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	240.315	INCHES
TOTAL INITIAL WATER	=	240.315	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES

		DA	1JC330		
AV	ERAGE ANNUAL	WIND SPEED		= 11.30	MPH ∞
AV AV	ERAGE IST QU FRAGE 2ND OI	JARIER RELAI. IARTER RELAT	IVE HUMIDITY	= 59.00 = 54.00	% %
AV	ERAGE 3RD QU	JARTER RELAT	IVE HUMIDITY	= 47.00	%
AV	ERAGE 4TH Q	JARTER RELAT	IVE HUMIDITY	= 58.00	%
NOTE:	PRECIPITAT	ION DATA WAS	SYNTHETICALL	Y GENERATE	D USING
	COEFFICIE	ENTS FOR	BILLINGS	MON	TANA
	NORMAL ME	AN MONIFLY F	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.97 0.85	0.71 1.05	1.05 1.26	1.93 1.16	2.39 0.85	2.07 0.80
NOTE:	TEMPERATURE	E DATA WAS S	INTHETICALLY	GENERATED	USING
	COEFFICIE	ENTS FOR	BILLINGS	MON	TANA
NO	RMAL MEAN MO	ONTHLY TEMPER	RATURE (DEGRE	ES FAHRENH	EIT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.90 72.30	28.40 70.30	33.80 59.40	44.60 49.30	54.90 35.00	64.00 27.10
NOTE:	SOLAR RADIA	ATION DATA WA	AS SYNTHETIC	ALLY GENERA	TED USING
	COEFFICIE AND STA	ENTS FOR E	BILLINGS DE = 45.80	MON	TANA
*****	*****	*********	*****	******	*****
AVERAG	E MONTHLY VA	ALUES IN INC	HES FOR YEARS	5 1 THRO	UGH 30
	J	AN/JUL FEB/A	AUG MAR/SEP	APR/OCT	MAY/NOV JUN/DEC
		 Р	age 4		

		DA1JC3	30					DA1J	2330		
PRECIPITATION											
TOTALS	0.96 1.09	0.78 1.02	0.95 1.23	1.77 1.13	2.26 0.92	2.05 0.82	AVERAGES OF MON	THLY AVERAG	ED DAILY HE	ADS (INCHES)	
STD. DEVIATIONS	0.49 0.59	0.41 0.66	0.48 0.86	0.90 0.69	0.98 0.59	0.81 0.43	DAILY AVERAGE HEAD ON TOP OF	LAYER 2			
RUNOFF							AVERAGES 0.0	108 0.001	2 0.0443	0.5047 0.44	467 0.1779
TOTALS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	STD. DEVIATIONS 0.0	031 0.049 146 0.001	6 0.1071	0.4380 0.4	708 0.05747031 0.1594
STD. DEVIATIONS	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.1	112 0.043 ******	6 0.0326 *****	0.0700 0.0 *****	746 0.0808 *****
EVAPOTRANSPIRATION											
TOTALS	0.694 1.216	0.490 0.926	0.751 1.077	1.703 0.950	2.011 0.865	1.929 0.611	*******	******	******	******	*****
STD. DEVIATIONS	0.242 0.634	0.273 0.600	0.387 0.749	0.704 0.534	0.700 0.469	0.659 0.265	AVERAGE ANNUAL TOTALS & (:	STD. DEVIAT INCH	IONS) FOR Y ES	EARS 1 THROU	JGH 30 PERCENT
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 1					PRECIPITATION	14.97	(2.581)	54346.0	100.00
TOTALS	0.0121 0.1163	0.0013 0.0555	0.0500 0.0514	<mark>0.5512</mark> 0.0673	0.5042 0.0773	0.1943 0.0648	RUNOFF	0.000	(0.0000)	0.00	0.000
STD. DEVIATIONS	0.0165 0.1254	0.0017 0.0492	0.1209 0.0356	0.4783 0.0789	0.4549 0.0815	0.1741 0.0912	EVAPOTRANSPIRATION	13.221 1.74577	(1.8932) (0.99536)	47992.88 <mark>6337.146</mark>	88.310 11.66075
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 3					FROM LAYER I				
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	PERCOLATION/LEAKAGE THROUGH LAYER 3	0.00007	(0.00004)	0.246	0.00045
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	AVERAGE HEAD ON TOP OF LAYER 2	0.131 (0.075)		
PERCOLATION/LEAKAGE T	THROUGH LAYE	R 4	2.0000		2.0000		PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00000	(0.00000)	0.000	0.00000
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	CHANGE IN WATER STORAGE	0.004	(0.7652)	15.92	0.029
STD. DEVIATIONS	0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	*******	******	*****	******	*****

Page 5

DA1JC330							
▲ ************************************							
PEAK DAILY VALUES FOR YEARS	1 THROUGH	30					
	(INCHES)	(CU. FT.)					
PRECIPITATION	1.75	6352.500					
RUNOFF	0.000	0.0000					
DRAINAGE COLLECTED FROM LAYER 1	0.13193	478.89526					
PERCOLATION/LEAKAGE THROUGH LAYER 3	0.000006	0.02322					
AVERAGE HEAD ON TOP OF LAYER 2	3.624						
MAXIMUM HEAD ON TOP OF LAYER 2	6.996						
LOCATION OF MAXIMUM HEAD IN LAYER 1 (DISTANCE FROM DRAIN)	0.0 FEET						
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000000	0.00000					
SNOW WATER	1.43	5192.0435					
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	.3605					
MINIMUM VEG. SOIL WATER (VOL/VOL)	0	.0250					
*** Maximum heads are computed using M	AcEnroe's equ	ations. ***					
Reference: Maximum Saturated Dept by Bruce M. McEnroe, U ASCE Journal of Enviro Vol. 119, No. 2, March	th over Landf Jniversity of onmental Engi n 1993, pp. 2	ill Liner Kansas neering 62-270.					
**************	*****	*****					
<u>^</u>							
**********	******	******					
Page 7							

	DA1JC	330	
FINAL WA	ATER STORAGE AT	END OF YEAR	30
LAYER	(INCHES)	(VOL/VOL))
1	1.4562	0.0809	
2	0.0000	0.0000	
3	0.1800	0.7500	
4	238.5589	0.2840	
SNOW WATE	ER 0.252		
*****	*****	*****	******

DA2JC006

*********	***************************************	*****
*********	***************************************	*****
**		**
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
**		**
*********	***************************************	*****
*****	* * * * * * * * * * * * * * * * * * * *	*****

PRECIPITATION DATA FILE:	C:\HELP3\J\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\J\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\J\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\J\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\J\DA2JC006.D10
OUTPUT DATA FILE:	C:\HELP3\J\DA2JC006.OUT

TIME: 17:40 DATE: 5/31/2016

TITLE: Colstrip, DAILY, 0.6% slope, 375'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

Page 1

DA2JC006 MATERIAL TEXTURE NUMBER 30 THICKNESS = 120.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT = 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.1863 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.499999987000E-04 CM/SEC

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 31 THICKNESS 18.00 INCHES = 0.5780 VOL/VOL POROSITY = FIELD CAPACITY 0.0760 VOL/VOL = WILTING POINT = 0.0250 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0774 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.410000002000E-02 CM/SEC SLOPE 1.50 PERCENT = DRAINAGE LENGTH = 375.0 FEET

LAYER 3

TYPE 4 - FLEXIB	LE I	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 35
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
IELD CAPACITY	=	0.0000 VOL/VOL
VILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
FFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
ML PINHOLE DENSITY	=	5.00 HOLES/ACRE
ML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
ML PLACEMENT OUALITY	=	4 - POOR

LAYER 4

DA2JC006

TYPE 3 - BAR	RIER	SOIL LINER	
MATERIAL TEX	TURE	NUMBER 17	
THICKNESS	=	0.24 INCHES	
POROSITY	=	0.7500 VOL/VOL	
FIELD CAPACITY	=	0.7470 VOL/VOL	
WILTING POINT	=	0.4000 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.7500 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.30000003000E-08 CM/SEC	

LAYER 5

TYPE 1 - VERTICAL	. PEF	RCOLATION LAYER
MATERIAL TEXT	TURE	NUMBER Ø
THICKNESS	=	840.00 INCHES
POROSITY	=	0.5010 VOL/VOL
FIELD CAPACITY	=	0.2840 VOL/VOL
WILTING POINT	=	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2840 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.188999998000E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #30 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 375. FEET.

=	96.70	
=	0.0	PERCENT
=	1.000	ACRES
=	12.0	INCHES
=	1.917	INCHES
=	6.492	INCHES
=	0.564	INCHES
=	0.000	INCHES
=	262.483	INCHES
=	262.483	INCHES
=	0.00	INCHES/YEAR
	= = = = = = = =	$\begin{array}{rcrcrc} = & 96.70 \\ = & 0.0 \\ = & 1.000 \\ = & 12.0 \\ = & 1.917 \\ = & 6.492 \\ = & 0.564 \\ = & 0.000 \\ = & 262.483 \\ = & 262.483 \\ = & 0.00 \end{array}$

Page 3

DA2JC006

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	11.30	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	59.00	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	54.00	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.00	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	58.00	%

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.97	0.71	1.05	1.93	2.39	2.07
0.85	1.05	1.26	1.16	0.85	0.80

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.90	28.40	33.80	44.60	54.90	64.00
72.30	70.30	59.40	49.30	35.00	27.10

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING

DA2JC006						
COEFFICIENTS	FOR	BIL	LIN	GS		MONTANA
AND STATION	N LATI	TUDE	=	45.80	DEGREES	

AVERAGE MONTH	LY VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	0.96	0.78	0.95	1.77	2.26	2.05
	1.09	1.02	1.23	1.13	0.92	0.82
STD. DEVIATIONS	0.49	0.41	0.48	0.90	0.98	0.81
	0.59	0.66	0.86	0.69	0.59	0.43
RUNOFF						
TOTALS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
STD. DEVIATIONS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
VAPOTRANSPIRATION						
TOTALS	0.695	0.490	0.796	2.088	2.236	2.063
	1.320	0.918	1.121	1.039	0.907	0.643
STD. DEVIATIONS	0.241	0.273	0.450	0.895	0.805	0.854
	0.709	0.670	0.777	0.625	0.476	0.276
ATERAL DRAINAGE COL	LECTED FROM	LAYER 2				
TOTALS	0.0415	0.0376	0.0413	0.0406	0.0433	0.0434
	0.0457	<mark>0.0461</mark>	0.0444	0.0453	0.0431	0.0439
STD. DEVIATIONS	0.0211	0.0194 0.0196	0.0212	0.0203	0.0207	0.0195

Page 5

DA2JC006							
TOTALS e).0001).0001	0.0001 0.0001	0.0001 0.0001	0.0001 0.0001	0.0001 0.0001	0.0001 0.0001	
STD. DEVIATIONS 0).0000).0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	
PERCOLATION/LEAKAGE THROUG	GH LAYER	5					
TOTALS 0).0000).0002	0.0001 0.0000	0.0000 0.0000	0.0001 0.0000	0.0001 0.0000	0.0001 0.0001	
STD. DEVIATIONS 0).0000).0008	0.0006 0.0000	0.0000 0.0000	0.0006 0.0000	0.0006 0.0000	0.0006 0.0006	
AVERAGES OF M	NONTHLY A	AVERAGED I	DAILY HEAD	OS (INCHES	5)		
DAILY AVERAGE HEAD ON TOP	OF LAYER	3					
AVERAGES 1	.4391	1.4318 1.5990	1.4346 1.5917	1.4559 1.5717	1.5036 1.5456	1.5551 1.5221	
STD. DEVIATIONS 6).7323).6856	0.7367 0.6813	0.7341 0.6809	0.7275 0.6805	0.7178 0.6845	0.7001 0.6904	
*****	******	*******	*******	*******	******	*****	
*****	******	*******	*******	*******	******	****	
AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30							
		INCHES		CU. FEE	г Р	ERCENT	
PRECIPITATION	14.9	97 (2.581)	54346	.0 10	0.00	
RUNOFF	0.0	900 ((0.0000)	0	.00	0.000	
EVAPOTRANSPIRATION	14.3	316 (2	2.1801)	51968	.68 9	5.626	
LATERAL DRAINAGE COLLECTED FROM LAYER 2	0.5	51613 (0	0.23145)	<mark>. 1873</mark>	<mark>.542</mark> 3	.44744	

DA2JC006							
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00082 (0.00041)	2.973	0.00547			
AVERAGE HEAD ON TOP OF LAYER 3	1.520 (0.682)					
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00073 (0.00135)	2.666	0.00491			
CHANGE IN WATER STORAGE	0.138 (1.1460)	501.05	0.922			
*****	******	*****	*****	*****			

∧ ****

ﻚ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ Დ		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
	~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~

PEAK DAILY VALUES FOR YEARS	1 THROUGH 3	0
	(INCHES)	(CU. FT.)
PRECIPITATION	1.75	6352.500
RUNOFF	0.000	0.0000
DRAINAGE COLLECTED FROM LAYER 2	0.00258	9.37662
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000005	0.01640
AVERAGE HEAD ON TOP OF LAYER 3	2.779	
MAXIMUM HEAD ON TOP OF LAYER 3	4.735	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	55.4 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.003148	11.42705
SNOW WATER	1.43	5192.0435
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	568
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.0	865

*** Maximum heads are computed using McEnroe's equations. ***

DA2JC006 Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

A
***************************************

FINAL WATER STORAGE AT END OF YEAR 30

 LAYER	(INCHES)	(VOL/VOL)	
1	25.1715	0.2098	
2	2.4610	0.1367	
3	0.0000	0.0000	
4	0.1800	0.7500	
5	238.5594	0.2840	
SNOW WATER	0.252		

#### DA3JC006

***************************************	*
***************************************	*
** **	*
** *	*
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **	*
** HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **	*
** DEVELOPED BY ENVIRONMENTAL LABORATORY **	*
** USAE WATERWAYS EXPERIMENT STATION **	*
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **	*
** **	*
** **	*
***************************************	*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷

PRECIPITATION DATA FILE:	C:\HELP3\J\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\J\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\J\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\J\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\J\DA3JC006.D10
OUTPUT DATA FILE:	C:\HELP3\J\DA3JC006.OUT

TIME: 17:46 DATE: 5/31/2016

TITLE: Colstrip, Intermediate, 0.60%, 375'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

Page 1

DA3JC006 MATERIAL TEXTURE NUMBER 30 THICKNESS = 1200.00 INCHES POROSITY = 0.5410 VOL/VOL FIELD CAPACITY = 0.1870 VOL/VOL WILTING POINT 0.0470 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.1869 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.499999987000E-04 CM/SEC

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS 18.00 INCHES = 0.5780 VOL/VOL POROSITY = FIELD CAPACITY 0.0760 VOL/VOL = WILTING POINT = 0.0250 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0774 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.970000029000E-02 CM/SEC SLOPE 1.00 PERCENT = DRAINAGE LENGTH = 375.0 FEET

LAYER 3

TYPE 4 - FLEXIB	LE I	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 35
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	5.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT OUALITY	=	4 - POOR

LAYER 4

DA3JC006

TYPE 3 - BAR	RIER	SOIL LINER	
MATERIAL TEX	TURE	NUMBER 17	
THICKNESS	=	0.24 INCHES	
POROSITY	=	0.7500 VOL/VOL	
FIELD CAPACITY	=	0.7470 VOL/VOL	
WILTING POINT	=	0.4000 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.7500 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.30000003000E-08 CM/SEC	

LAYER 5

TYPE 1 - VERTICA	L PEF	RCOLATION LAYER
MATERIAL TEX	TURE	NUMBER Ø
THICKNESS	=	840.00 INCHES
POROSITY	=	0.5010 VOL/VOL
FIELD CAPACITY	=	0.2840 VOL/VOL
WILTING POINT	=	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	- =	0.2840 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.188999998000E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #30 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 375. FEET.

SCS RUNOFF CURVE NUMBER	=	96.70	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	1.917	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	6.492	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.564	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	464.441	INCHES
TOTAL INITIAL WATER	=	464.441	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Page 3

DA3JC006

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE	i) =	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	11.30	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDIT	Y =	59.00	%
AVERAGE 2ND QUARTER RELATIVE HUMIDIT	-Y =	54.00	%
AVERAGE 3RD QUARTER RELATIVE HUMIDIT	Y =	47.00	%
AVERAGE 4TH QUARTER RELATIVE HUMIDIT	Y =	58.00	%

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.97	0.71	1.05	1.93	2.39	2.07
0.85	1.05	1.26	1.16	0.85	0.80

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.90	28.40	33.80	44.60	54.90	64.00
72.30	70.30	59.40	49.30	35.00	27.10

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING

DA3JC006						
COEFFICIENTS	FOR	BIL	LIN	GS		MONTANA
AND STATION	N LATI	TUDE	=	45.80	DEGREES	5

AVERAGE MONTHI	Y VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	0.96	0.78	0.95	1.77	2.26	2.05
	1.09	1.02	1.23	1.13	0.92	0.82
STD. DEVIATIONS	0.49	0.41	0.48	0.90	0.98	0.81
	0.59	0.66	0.86	0.69	0.59	0.43
RUNOFF						
TOTALS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
STD. DEVIATIONS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
EVAPOTRANSPIRATION						
TOTALS	0.695	0.490	0.796	2.088	2.236	2.063
	1.320	0.918	1.121	1.039	0.907	0.643
STD. DEVIATIONS	0.241	0.273	0.450	0.895	0.805	0.854
	0.709	0.670	0.777	0.625	0.476	0.276
LATERAL DRAINAGE COLI	ECTED FROM	LAYER 2				
TOTALS	0.0271	0.0245	0.0267	0.0261	0.0283	0.0290
	0.0311	<mark>0.0314</mark>	0.0297	0.0298	0.0280	0.0284
STD. DEVIATIONS	0.0121 0.0119	0.0113	0.0125	0.0122	0.0126	0.0119

Page 5

		DA3JCØ	06			
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
PERCOLATION/LEAKAGE THROU	GH LAYER	8 5				
TOTALS	0.0000 0.0000	0.0000	0.0000 0.0001	0.0000 0.0000	0.0001 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0006	0.0000 0.0000	0.0006 0.0000	0.0000 0.0000
AVERAGES OF	MONTHLY	AVERAGE	DAILY HEA	ADS (INCH	ES)	
DAILY AVERAGE HEAD ON TOP	OF LAYE	R 3				
AVERAGES	0.5965 0.6842	0.5911 0.6903	0.5880 0.6763	0.5943 0.6557	0.6232 0.6366	0.6603 0.6241
STD. DEVIATIONS	0.2669 0.2628	0.2711 0.2596	0.2743 0.2551	0.2767 0.2453	0.2774 0.2403	0.2715 0.2419
******	******	******	********	*******	*******	******
AVERAGE ANNUAL TOTALS	******* & (STD.	DEVIATIO	*********** DNS) FOR YE	******** ARS 1	******** THROUGH	*********
		INCHES	5	CU. FE	ET	PERCENT
RECIPITATION	14.	97 (2.581)	54340	6.0	100.00
UNOFF	0.	000 (0.0000)	(0.00	0.000
VAPOTRANSPIRATION	14.	316 (2.1801)	5196	8.68	95.626
ATERAL DRAINAGE COLLECTED FROM LAYER 2	0.	34025 (0.13597)	123	5.105	2.27267

DA3JC006									
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00031 (0.00013)	1.110	0.00204					
AVERAGE HEAD ON TOP OF LAYER 3	0.635 (0.254)							
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00021 (0.00080)	0.762	0.00140					
CHANGE IN WATER STORAGE	0.314 (1.0706)	1141.39	2.100					
*****	******	*****	*****	*****					

∧ ****

· • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	 *****	

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	1.75	6352.500
RUNOFF	0.000	0.0000
DRAINAGE COLLECTED FROM LAYER 2	0.00163	5.92839
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000002	0.00550
AVERAGE HEAD ON TOP OF LAYER 3	1.114	
MAXIMUM HEAD ON TOP OF LAYER 3	1.985	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	40.8 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.003148	11.42626
SNOW WATER	1.43	5192.0435
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1568
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.0	1865

*** Maximum heads are computed using McEnroe's equations. ***

DA3JC006 Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

A

FINAL WATER STORAGE AT END OF YEAR 30

 LAYER	(INCHES)	(VOL/VOL)	
1	233.1639	0.1943	
2	1.7183	0.0955	
3	0.0000	0.0000	
4	0.1800	0.7500	
5	238.5597	0.2840	
SNOW WATER	0.252		

DA4JC025

^		
*********	***************************************	******
*********	***********	*****
**		**
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
**		**
********	***************************************	*******
ﻮ 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		· • • • • • • • • • • • • • • • • • • •

PRECIPITATION DATA FILE:	C:\HELP3\J\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\J\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\J\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\J\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\J\DA4JC025.D10
OUTPUT DATA FILE:	C:\HELP3\J\DA4JC025.OUT

TIME: 18: 3 DATE: 5/31/2016

TITLE: Colstrip, Final Grading, 2.5%, 150'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

Page 1

DA4JC025 MATERIAL TEXTURE NUMBER 30 = 2520.00 INCHES = 0.5410 VOL/VOL

THICKNESS

POROSITY

FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1865 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.499999987000E-04 CM/SEC
NOTE: SATURATED HYDRAULIC CO	NDU	CTIVITY IS MULTIPLIED BY 1.80
FOR ROOT CHANNELS IN	TO	P HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERA	L DF	RAINAGE LAYER	
MATERIAL TEXT	URE	NUMBER Ø	
THICKNESS	=	18.00 INCHES	
POROSITY	=	0.5780 VOL/VOL	
FIELD CAPACITY	=	0.0760 VOL/VOL	
WILTING POINT	=	0.0250 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0798 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.970000029000E-02 CM/SEC	
SLOPE	=	0.90 PERCENT	
DRAINAGE LENGTH	=	375.0 FEET	

LAYER 3

MATERIAL TEXT	URE	NUMBER 35					
THICKNESS	=	0.06 INCHES					
POROSITY	=	0.0000 VOL/VOL					
FIELD CAPACITY	=	0.0000 VOL/VOL					
WILTING POINT	=	0.0000 VOL/VOL					
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL					
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC					
FML PINHOLE DENSITY	=	5.00 HOLES/ACRE					
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE					
FML PLACEMENT QUALITY	=	4 - POOR					

DA4JC025 LAYER 4

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEAT	UNE	NUMBER 17
THICKNESS	=	0.24 INCHES
POROSITY	=	0.7500 VOL/VOL
FIELD CAPACITY	=	0.7470 VOL/VOL
WILTING POINT	=	0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.30000003000E-08 CM/SEC

LAYER 5

TYPE 1 - VERTIC	AL PEF	RCOLATION LAYER	
MATERIAL TE	XTURE	NUMBER Ø	
THICKNESS	=	840.00 INCHES	
POROSITY	=	0.5010 VOL/VOL	
FIELD CAPACITY	=	0.2840 VOL/VOL	
WILTING POINT	=	0.1350 VOL/VOL	
INITIAL SOIL WATER CONTEN	T =	0.2840 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.188999998000E-03 (CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #30 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 375. FEET.

SCS RUNOFF CURVE NUMBER	=	96.80	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	15.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	1.436	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.115	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.705	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	710.043	INCHES

Page 3

	DA4JC025		
TOTAL INITIAL WATER	=	710.043	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	1.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	15.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	11.30	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	59.00	%
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	54.00	%
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.00	%
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	58.00	%

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.97	0.71	1.05	1.93	2.39	2.07
0.85	1.05	1.26	1.16	0.85	0.80

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.90	28.40	33.80	44.60	54.90	64.00
72.30	70.30	59.40	49.30	35.00	27.10

DA4JC025

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA AND STATION LATITUDE = 45.80 DEGREES

AVERAGE MONTH	LY VALUES IN	N INCHES	FOR YEARS	1 THR	OUGH 30	
PRECIPITATION	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
TOTALS	0.96	0.78	0.95	1.77	2.26	2.05
	1.09	1.02	1.23	1.13	0.92	0.82
STD. DEVIATIONS	0.49	0.41	0.48	0.90	0.98	0.81
	0.59	0.66	0.86	0.69	0.59	0.43
RUNOFF						
TOTALS	0.045	0.126	0.187	0.456	0.487	0.337
	0.150	0.102	0.200	0.161	0.109	0.020
STD. DEVIATIONS	0.097	0.135	0.198	0.468	0.416	0.320
	0.151	0.144	0.268	0.160	0.175	0.054
EVAPOTRANSPIRATION						
TOTALS	0.692	0.510	0.679	1.615	2.015	1.713
	1.885	0.909	0.678	0.633	0.521	0.559
STD. DEVIATIONS	0.242	0.263	0.242	0.567	0.633	0.542
	0.516	0.520	0.426	0.367	0.209	0.245
LATERAL DRAINAGE COL	LECTED FROM	LAYER 2				
TOTALS	0.0151	0.0137	0.0149	0.0142	0.0147	0.0146
	<mark>0.0153</mark>	0.0152	0.0145	0.0149	0.0146	0.0153
STD. DEVIATIONS	0.0065	0.0060	0.0066	0.0062	0.0063	0.0063
	0.0070	0.0074	0.0072	0.0070	0.0064	0.0063
		Page	5			

DA4JC025 PERCOLATION/LEAKAGE THROUGH LAYER 4 -----TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 5 TOTALS 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 _____ AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) _____ DAILY AVERAGE HEAD ON TOP OF LAYER 3 -----AVERAGES 0.3701 0.3684 0.3646 0.3583 0.3601 0.3681 0.3729 0.3706 0.3667 0.3646 0.3700 0.3733 STD. DEVIATIONS 0.1582 0.1608 0.1612 0.1560 0.1552 0.1599 0.1708 0.1809 0.1814 0.1713 0.1606 0.1529 AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INCHES			CU. FEET	PERCENT				
PRECIPITATION	14.97	(2.581)	54346.0	100.00				
RUNOFF	2.381	(0.9951)	8643.53	15.905				
EVAPOTRANSPIRATION	12.409	(1.7480)	45045.17	82.886				
LATERAL DRAINAGE COLLECTED	0.17704	1 (0.07502)	<mark>642.672</mark>	1.18256				
Page 6									

	DA4JC0	25		
FROM LAYER 2				
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00017 (0.00007)	0.632	0.00116
AVERAGE HEAD ON TOP OF LAYER 3	0.367 (0.156)		
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00010 (0.00057)	<mark>0.381</mark>	0.00070
CHANGE IN WATER STORAGE	0.004 (1.0596)	14.18	0.026
******	******	****	*******	******

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	1.75	6352.500
RUNOFF	1.184	4297.3921
DRAINAGE COLLECTED FROM LAYER 2	0.00104	3.78746
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000001	0.00378
AVERAGE HEAD ON TOP OF LAYER 3	<mark>0.791</mark>	
MAXIMUM HEAD ON TOP OF LAYER 3	1.433	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	35.1 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.003139	11.39376
SNOW WATER	1.43	5192.0435
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.3	2831
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.0	9470

DA4JC025 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. FINAL WATER STORAGE AT END OF YEAR 30 _____ LAYER (INCHES) (VOL/VOL) -------------1 469.6844 0.1864 2 1.4852 0.0825 3 0.0000 0.0000 4 0.1800 0.7500

0.2840

5 238.5589 SNOW WATER 0.252

♠

Page 7

ATTACHMENT 4

Analysis: Estimated Volume of Infiltration Water above the Cover System for J Cell

Analysis: Estimated Volume of Infiltration Water above the Cover System for J Cell.

J Cell, Colstrip Steam Electric Station, Colstrip, Montana

Cell	J-1(A)	J-1(B)	J-1(C)	J-1(D)	J-1(E)	Total
Area (acre)	10.5	8.4	10.1	10.8	11.1	50.9

Note: J-1(A) to J-1(E) Cells from West to East

Cell Condition	0	D	Ι	F
Max. Monthly Infiltration Water Vol.(in/month)	0.5512	0.0461	0.0314	0.0153
Max. Monthly Infiltration Water Vol.(gal/month/ac)	14966.4	1251.7	852.6	415.4
Average Yearly Infiltration Water Vol.(cf/yr/ac)	6337.2	1873.5	1235.1	642.7
Average Yearly Infiltration Water Vol.(gal/yr/ac)	47406	14015	9239	4808

Note: O = Open Cell, D = Daily Fill, I = Intermediate Fill, F = Final Grade.

		Cell Operating Condition Area (acre)					Max. Monthly	Average			
Scenario	T 1(A)	$I_1(D)$	$I_{1}(C)$	$I_{1}(D)$	I 1(E)	0	D	Т	Б	Water Gen.	Yearly Water
	J-1(A)	J-1(D)	J-1(C)	J-1(D)	J-1(E)	0	D	1	Г	(gal/mon)	Gen. (gal/yr)
1	0					10.5				157,147	497,758
2	D	0				8.4	10.5			138,861	545,362
3	I/F	D	0			10.1	8.4	5.3	5.3	168,332	670,265
4	I/F	I/F	D	0		10.8	10.1	9.5	9.5	186,262	786,270
5	I/F	I/F	I/F	D	0	11.1	10.8	14.5	14.5	198,032	881,238
6	I/F	I/F	I/F	I/F	0	11.1		19.9	19.9	191,361	805,731
7	F	F	F	F	F				50.9	21,145	244,702

Note: Water in the non-operating cells will be drained.

Maximum Monthly Generation (gal/mon)	198,032
Average Daily Generation in max. month (gal/day)	6,493
Maximum Annual Infiltration Water Generation (gal/year)	881,238
Average Daily Generation in max. year (gal/day)	2,414

ATTACHMENT 5

Analysis: Estimated Volume of Water Infiltration through the Cap System for J Cell

Analysis: Estimated Volume of Water Infiltration through the Cap System for J Cell.

J Cell, Colstrip Steam Electric Station, Colstrip, Montana

Cell	J-1(A)	J-1(B)	J-1(C)	J-1(D)	J-1(E)	Total
Area (acre)	10.5	8.4	10.1	10.8	11.1	50.9

Note: J-1(A) to J-1(E) Cells from West to East

Cell Condition	0	D	Ι	F
Leakage Rate (cu. ft./acre/year)	9.1380	2.6660	0.7620	0.3810

Note: O = Open Cell, D = Daily Fill, I = Intermediate Fill, F = Final Grade.

	Cell Operating Condition				Area (acre)						
Scenario	J-1(A)	J-1(B)	J-1(C)	J-1(D)	J-1(E)	0	D	Ι	F	Total (gal/year)	Total (gal/day)
1	0	0	0	0	0	50.9				465.1	1.27
2	D	0	0	0	0	40.4	10.5			397.2	1.09
3	I/F	D	0	0	0	32.0	8.4	5.3	5.3	320.8	0.88
4	I/F	I/F	D	0	0	21.9	10.1	9.5	9.5	237.9	0.65
5	I/F	I/F	I/F	D	0	11.1	10.8	14.5	14.5	146.8	0.40
6	I/F	I/F	I/F	I/F	0	11.1		19.9	19.9	124.2	0.34
7	F	F	F	F	F				50.9	19.4	0.05

Maximum Annual Infiltration Water Generation (gal/year)	465
Average Daily Generation in max. year (gal/day)	1.27

APPENDIX A.2

Final Cover Settlement Analysis

COMPUTATION COVER SHEET

Client: Talen Montana, LLC Proje	ect: EHP J Cell L	iner System Design	Project No.: ME1210	Task No.: 4
TITLE OF COMPUTATIONS	EVALUATION O	F SETTLEMENT BELC	OW LINER SYSTEM AT (CELL J OF EHP
COMPUTATIONS BY:	Signature	Lypvichum	<u>1(</u>)/21/2015
	Printed Name and Title	V. Krishnan Staff Engineer		
ASSUMPTIONS AND PROCEDURES CHECKED BY: (Peer Reviewer)	S Signature	Chili	<u>1</u> D	1/05/2015 ATE
	Printed Name and Title	C. Li Project Engineer		
COMPUTATIONS CHECKED BY:	Signature	Ranjir Eught	<u>10</u>	0/21/2015 ATE
	Printed Name and Title	R. Gupta Project Engineer		
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature	Likeichnen	<u>12</u>	2/07/2015 ATE
	Printed Name and Title	V. Krishnan Staff Engineer		
APPROVED BY: (PM or Designate)	Signature	Fundant	<u> </u>	/19/2015 ATE
(112022009	Printed Name	D. Espinoza		
APPROVAL NOTES:		Senior Frincipar		
REVISIONS (Number and initial all rev	visions)			
NO. SHEET DA	TE	BY CHI	ECKED BY	APPROVAL

				Geo	syn	tec	
				(consul	tants	
				1	of	8	
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. G	ıpta, C. Li	Date:	10/21/	2015	
Client: Talen Montana. LLC	Project: EHP J Cell	Liner System Design	Project No	: ME1210	Phase 1	No.: 04	

EVALUATION OF SETTLEMENT BELOW THE LINER SYSTEM AT CELL J OF EFFLUENT HOLDING POND

1 INTRODUCTION

1.1 Purpose

The purpose of this calculation package is to evaluate the one-dimensional compression of the foundation materials in order to estimate the settlement and strain in the liner system for Cell J of the Effluent Holding Pond (site) at Colstrip Steam Electric Station, Rosebud County, Montana. Specifically, the settlement of the most critical portion of the liner grades along the leachate collection system corridor (1.5% slope) of the subcells is evaluated. The leachate collection system corridor should maintain positive drainage towards the low point on the cell floor after foundation settlements have occurred. Also, calculated strains due to differential settlement should not exceed tolerable strains for the liner system.

Subsurface materials beneath the landfill liner are expected to compress as waste is placed in the landfill (i.e., as load is applied). The resulting foundation settlements may not be uniform across the site because: (i) the subsurface materials vary in thickness beneath the landfill; and (ii) the loading of the foundation by the landfill waste varies across the length of the cross section considered.

1.2 <u>Method</u>

The settlement analysis is performed using a combination of two theories based on the type of subsurface material: the theory of elasticity, which is applicable to subsurface materials that behave similar to sands or low plasticity silts; and one-dimensional consolidation theory, which is applicable to subsurface materials that behave similar to clays or elastic silts. According to the theory of elasticity, the subsurface material is expected to elastically compress immediately upon loading; whereas according to the one-dimensional consolidation theory, the subsurface material is expected to exhibit increased pore water pressure upon loading, and compress over an extended period of time while dissipating pore water pressure.

1.3 Overview of the Subsurface Strata

The subsurface strata beneath the proposed liner for Cell J can be divided into the following general layers, from top to bottom:

- Layer I consists of bottom ash, which is a Coal Combustion Residual (CCR) material disposed in J-Cell;
- Layer II consists of scrubber slurry paste, also referred to as paste, which is a CCR material disposed in J-Cell;
- Layer III consists of silt and silty clay that likely represent native ground soils; and

				Geo	syn	tec
				С	onsul	tants
				2	of	8
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. Gup	ta, C. Li	Date:	10/21/	2015
Client: Talen Montana, LLC	Project: EHP J Cell	Liner System Design	Project No.:	ME1210	Phase I	No.: <u>04</u>

• Layer IV consists of interbedded shale and sandstone.

In addition, an additional deposit of baked shale and sandstone, red to orange, brittle and fractured was identified along portions of the north sideslope of J Cell during review of previous geological reports at the site (Bechtel Power Corporation, 1980). This material was not encountered during the site investigation.

The total settlement of the liner system due to placement of waste in the landfill is evaluated by estimating the settlement of all four layers, and adding the values obtained.

2 CRITICAL CROSS SECTIONS

In order to evaluate the settlement resulting from the load of the landfill, critical cross-sections are first selected. The cross sections considered include sections along the leachate collection corridor of the subcells. The purpose of evaluating settlement along the leachate collection corridors is to evaluate the post-settlement liner grades, and to determine if positive drainage to the low point of the sub-cell is likely to be maintained. In addition, the cross sections considered incorporate a broad variation of slope geometry, waste thickness, and representative foundation materials beneath the site; thus the resulting analysis may be considered to be a reasonable representation of the liner's performance across the site. The overall top of liner grading plan, overall top of final cover grading plan, and borehole logs are considered for the development of the critical cross sections. The top of liner grading plan and top of final cover grading plan with the location of the cross sections are shown on Figures 1 and 2 of this calculation package, respectively. A drawing from a previous geological report showing the extent of the baked shale and sandstone layer is shown in Figure 3. The resulting cross sections (sections A-A', B-B', C-C', D-D', and E-E') are shown in Figures 4 through 8 of this calculation package. A profile of the proposed liner system and cover system for Cell J is shown in Figure 9.

Several points along the liner system are selected for evaluation of settlement at each cross section; these points correspond to locations where slopes and thickness of the landfill waste or subsurface strata change. The elevations of the selected points along the cross section, in addition to the corresponding elevations of the overburden materials and subsurface layer boundaries, are used as input to the settlement analysis. The elevations of the leachate collection system corridor and final cover system are obtained from the top of liner and top of final cover grading plans. The elevations of the subsurface layer boundaries are determined from nearby boring logs included in Attachment A. Settlement is estimated based on the expected compressibility of subsurface materials from about 3290 feet above mean sea level (ft-MSL) down to about 3100 ft-MSL.

3 MATERIAL PROPERTIES

The material properties for this analysis are selected based on a geotechnical site investigation performed at the site in June 2015 by Geosyntec Consultants. Laboratory tests relevant to this analysis that were

				Geo	syn	tec
				C	consul	tants
				3	of	8
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. Gu	ıpta, C. Li	Date:	10/21/	/2015
Client: Talen Montana, LLC	Project: EHP J Cell	Liner System Design	Project No.	ME1210	Phase I	No.: <u>04</u>

conducted as part of the investigation include: grain size analysis, percent passing No. 200 sieve, Atterberg limits, USCS soil classification, moisture content, dry unit weight, and one-dimensional consolidation tests. The results from relevant laboratory tests are used to develop the material properties used in this analysis.

3.1 Unit Weights

Foundation Materials

The average unit weight of Layers I, II, and IV is estimated from laboratory test results of dry unit weight and moisture content, as shown in Table 1. The unit weight for Layer III is estimated based on the soil type and consistency, as provided by Kulhawy and Mayne (1990). The soil type is assumed as well graded silty sand, and the consistency is estimated from the SPT blow count values as shown in Table 2 and Table 3.

Coal Combustion Residuals (CCR)

The primary type of coal combustion residual waste received at Cell J is paste, and this material is expected to be similar to Layer II. It is expected that the plant will utilize dry processing technology in future, and the unit weight of dry CCR disposed is expected to be less than the unit weight of moist CCR, i.e., Layer II. In this analysis, the unit weight of the CCR disposed in the landfill is conservatively assumed to be same as that of Layer II. A 1.5 foot thick layer of bottom ash will be placed immediately above the new liner system in the cell; the unit weight of this material is assumed to be same as the unit weight of Layer I.

Final Cover Soil

The unit weight of the final cover soil is assumed as 120 pcf.

3.2 <u>Consolidation Properties of Bottom Ash, Paste, and Interbedded Shale</u>

The preconsolidation pressure, primary compression index, recompression index, and initial void ratio of Layers I, II, and IV is determined based on results of consolidation tests performed on samples from these layers, as shown in Table 1.

The ratio of the secondary compression index to primary compression index is constant for several soils, independent of effective vertical stress and time elapsed after primary consolidation; for inorganic clays and silts, this ratio is 0.04 ± 0.01 , per Terzaghi et al. (1996). The secondary compression index is evaluated by multiplying the constant ratio with the primary virgin compression index in case of normally consolidated soils, and with the primary recompression index in case of over-consolidated soils. The bottom ash and paste layers are expected to behave similar to silts; therefore the secondary compression index of these materials is estimated using this procedure.

3.3 Elastic Properties of Layer III

Layer III is silt and silty clay and is assumed to behave elastically for this settlement analysis. The constrained elastic modulus, the thickness, and the net increase in effective stress are used to estimate the

				Geo	syn	tec
				C	consul	ltants
				4	of	8
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. G	ıpta, C. Li	Date:	10/21/	/2015
Client: Talen Montana, LLC	Project: EHP J Cell	Liner System Design	_Project No.	<u>ME1210</u>	Phase 1	No.: <u>04</u>

settlement due to placement of waste. The constrained elastic modulus is estimated using the following empirical correlation with effective vertical stress and porosity, per Kulhawy and Mayne (1990):

$$\frac{M_{ds}}{p_a} = m \left(\frac{\sigma_v}{p_a}\right)^{0.5}$$
(Eqn. 1)

where:

 M_{ds} = drained secant constrained elastic modulus; σ'_v = effective vertical stress; m = modulus number, correlated with porosity; and p_a = atmospheric pressure.

Assuming the porosity of Layer III as 0.35, the modulus number is estimated as 150, as shown in Figure 10. The evaluation of the constrained modulus for Layer III is shown in Table 4, and is estimated as 445 ksf.

The geological description of the baked shale and sandstone deposit identified in J Cell indicates that it is likely to exhibit similar compressibility as Layer III. Therefore, the compression of this deposit is estimated based on the compressibility properties determined for Layer III.

3.4 Groundwater Table

Although groundwater was not encountered during the site investigation, for this analysis, the groundwater table is conservatively assumed at the bottom of the liner system. It is expected that Layer I, Layer II, and Layer IV will develop pore water pressures upon placement of waste in the cell, and the gradual dissipation of pore water pressure over time in these layers will result in settlement due to primary consolidation. Placement of fly ash in future is not expected to raise the groundwater table because the liner system would have been installed.

The geotechnical properties of the subsurface materials used for calculation of settlement are summarized in Table 5.

4 ANALYSIS PROCEDURE

4.1 Elastic Settlement

The elastic settlement of a granular subsurface material is estimated based on the constrained elastic modulus, the layer thickness, and the corresponding change in vertical effective stress due to loading, per the following equation by Qian et al. (2001):

$$S_{E} = \frac{\Delta \sigma_{v} \times H}{M_{ds}}$$
(Eqn. 2)

				Geo	syn	tec	
				С	consul	tants	
				5	of	8	
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. Gu	ıpta, C. Li	Date:	10/21/	2015	
Client: Talen Montana, LLC	Project: EHP J Cell 1	Liner System Design	_Project No.:	ME1210	Phase N	No.: <u>04</u>	

where:	S_E = immediate settlement of subsurface layer;
	$\Delta \sigma_v$ = increment of vertical stress due to applied load;
	H = initial thickness of subsurface layer; and
	M_{ds} = drained secant constrained elastic modulus of subsurface layer.

The constrained modulus is defined as the ratio of vertical stress to vertical strain under uniaxial strain conditions, i.e., strain in the horizontal direction is zero. The foundation materials are expected to exhibit one-dimensional compression due to placement of waste, and horizontal strain of the foundation materials is not anticipated.

The thickness of the layer and the increment of vertical stress due to the applied load are determined from the critical cross section and evaluated waste properties. The constrained elastic modulus of the layer is evaluated using the empirical correlation described in Section 3.3.

4.2 <u>Settlement due to Primary Consolidation</u>

The ultimate settlement of a fine grained, cohesive subsurface material due to primary consolidation is estimated based on the current stress in the layer, the expected load to be applied, and the compressibility of the subsurface material, according to the following set of equations described by Terzaghi et al. (1996):

$$S_{P} = \frac{C_{c}}{1 + e_{0}} \operatorname{Hlog}\left(\frac{\sigma'_{v0} + \Delta \sigma_{v}}{\sigma'_{v0}}\right) \text{for } \sigma'_{v0} > P_{P}$$
(Eqn. 3)

$$S_{P} = \frac{C_{c}}{1 + e_{0}} \operatorname{Hlog}\left(\frac{\sigma'_{v0} + \Delta \sigma_{v}}{P_{P}}\right) + \frac{C_{r}}{1 + e_{0}} \operatorname{Hlog}\left(\frac{P_{P}}{\sigma'_{v0}}\right) \text{for } \sigma'_{v0} < P_{P} \text{ and } \sigma'_{v0} + \Delta \sigma_{v} > P_{P}$$
(Eqn. 4)

$$S_{P} = \frac{C_{r}}{1 + e_{0}} Hlog\left(\frac{\sigma'_{v0} + \Delta\sigma_{v}}{\sigma'_{v0}}\right) for \sigma'_{v0} + \Delta\sigma_{v} < P_{P}$$
(Eqn. 5)

where:

S_p = ultimate settlement due to primary consolidation;

 C_c = primary virgin compression index;

 C_r = primary recompression index;

- e_0 = initial void ratio;
- H = initial thickness of compressible layer;
- σ'_{v0} = initial vertical effective stress at mid-depth of compressible layer;

 $\Delta \sigma_v$ = increment of vertical stress due to applied load; and

 P_p = preconsolidation pressure.

				Geo	syn	tec
				(consul	ltants
				6	of	8
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. G	upta, C. Li	Date:	10/21/	/2015
Client: Talen Montana, LLC	Project: EHP J Cell	Liner System Design	Project No.	: <u>ME1210</u>	_Phase I	No.: <u>04</u>

4.3 Settlement due to Secondary Compression

The settlement of a fine grained, cohesive subsurface material due to secondary compression is estimated based on the thickness of the material, the secondary compression index, and the time elapsed after primary consolidation, according to the following equation described by Terzaghi et al. (1996):

$$S_{S} = \frac{\begin{pmatrix} C_{\alpha} \\ C_{c} \end{pmatrix} \times C_{c}}{1 + e_{0}} Hlog\left(\frac{t_{2}}{t_{1}}\right)$$
(Eqn. 6)

where:

 S_s = settlement due to secondary compression; C_{α}/C_c = ratio of secondary compression index to primary compression index; C_c = primary compression index; e_0 = initial void ratio; H = initial thickness of compressible layer; t_1 = time at which secondary compression begins, i.e., end of primary consolidation; and t_2 = time at which secondary compression is calculated.

The secondary compression index is defined as the reduction in void ratio during one logarithmic cycle of the ratio t_2/t_1 . The ratio of the secondary compression index to primary compression index is constant for a geotechnical material, independent of vertical effective stress and time elapsed after primary consolidation. For purposes of these calculations, the time at which primary consolidation ends and secondary compression begins is assumed to be 1 year while t_2 is assumed to be 60 years.

4.4 <u>Total Settlement</u>

The total settlement of the foundation materials in the long term is estimated as the sum of the immediate settlement, settlement due to primary consolidation, and settlement due to secondary compression.

$$\mathbf{S}_{\mathrm{T}} = \mathbf{S}_{\mathrm{E}} + \mathbf{S}_{\mathrm{P}} + \mathbf{S}_{\mathrm{S}} \tag{Eqn. 7}$$

where:

 S_T = total settlement of foundation soils; S_E = immediate (elastic) settlement of Layer III;

 S_P = settlement due to primary consolidation of Layers I, II, and IV; and

 S_S = settlement due to secondary compression of Layers I, II, and IV.

4.5 Differential Settlement and Strain in the Liner System

Differential settlement refers to the settlement of a point relative to the settlement of adjacent points, and is evaluated in order to determine the change in slope of the leachate collection corridor due to settlement.

				Geosyntec [▶]			
				consultants			
				7	of	8	
Written by: V. Krishnan	Date: 10/21/2015	Reviewed by: R. Gu	ıpta, C. Li	Date:	10/21/2015		
Client: Talen Montana, LLC	Project: EHP J Cell Li	ner System Design	_Project No.	: <u>ME1210</u>	Phase I	No.: <u>04</u>	

The strain in the liner system refers to the change in length of segments of the liner system due to settlement, relative to the initial length of the segment considered.

5 **RESULTS AND DISCUSSION**

The results of the liner system settlement analysis are presented in Attachment B. The calculated total settlement ranges from 0.8 feet to 7.6 feet for Section A-A', 0.5 feet to 7.0 feet for Section B-B', 0.1 feet to 5.2 feet for Section C-C', 0.3 feet to 7.3 feet for Section D-D', and 0.3 feet to 7.3 feet for Section E-E'. The maximum strain calculated in the liner system is 0.98% for Section A-A', 1.24% for Section B-B', 0.62% for Section C-C', 0.91% for Section D-D', and 0.95% for Section E-E'. The minimum post-settlement liner grade calculated is 0.75% for Section A-A', 0.75% for Section B-B', 0.22% for Section C-C', 0.68% for Section D-D', and 0.25% for Section E-E'.

The CCR disposed in the cell is expected to be relatively incompressible due to being relatively inert and of low compressibility. In addition, the CCR will be placed in lifts and compacted. Settlement within the CCR due to self-weight and overburden is expected to occur as the filling progresses; therefore, most of the settlement is expected to have been completed before the final cover system is constructed. As a result, it is reasonable to conclude that the final cover system will experience negligible settlement due to settlement of underlying waste. The final cover system may experience some settlement due to compression of the underlying foundation strata, but it would only be expected to settle a small fraction of the total foundation settlement.

6 SUMMARY AND CONCLUSIONS

The critical cross sections are selected for analysis and settlements are estimated at various points along the section. Properties of subsurface materials and waste are assigned based on laboratory results, correlations from published literature, and Geosyntec's previous experience.

Based on the analyses presented herein, the following conclusions are drawn:

- The calculated differential settlements and estimated strain in the liner system is well below the 3-4 percent yield strain for high density polyethylene (HDPE) geomembranes as reported by Berg and Bonaparte (1993). Therefore, the calculated settlements and strains are considered acceptable.
- The calculated magnitude of settlement, based on the conservative approach adopted throughout this evaluation, is not expected to result in any adverse effects on the liner system or the performance of Cell J in general.
- The calculated post-settlement slopes along the leachate collection corridors indicate that positive drainage to the leachate drain pipes is expected to be maintained. Further, the final cover system is expected to experience only a fraction of the settlement calculated for the liner system, so its functionality is not expected to be adversely affected.
| | | | | Geo | syn | tec | |
|--------------------------------|---------------------|----------------------------|-------------|------------------|---------|----------------|--|
| | | | | (| consul | tants | |
| | | | | 8 | of | 8 | |
| Written by: V. Krishnan | Date: 10/21/2015 | Reviewed by: R. G u | ıpta, C. Li | Date: | 10/21/ | 2015 | |
| Client: Talen Montana, LLC | Project: EHP J Cell | Liner System Design | _Project No | .: <u>ME1210</u> | Phase I | No.: <u>04</u> | |

REFERENCES

- Bechtel Power Corporation. (December 1980). *Site Reconnaissance and Geologic Feasibility Report on Four Alternative Pond Sites.* San Francisco: Bechtel Power Corporation.
- Berg, R. R., & Bonaparte, R. (1993). Long-term Allowable Tensile Stresses for Polyethylene Geomembranes. *Geotextiles and Geomembranes*, 287-306.
- Kulhawy, F., & Mayne, P. (1990). *Manual on Estimating Soil Properties for Foundation Design*. Palo Alto, CA: Electric Power Research Institute.
- Qian, X., Koerner, R., & Gray, D. (2001). *Geotechnical Aspects of Landfill Design and Construction*. Prentice Hall.
- Terzaghi, K., Peck, R. B., & Mesri, G. (1996). *Soil Mechanics in Engineering Practice*. New York: John Wiley and Sons, Inc.

TABLES

Laver	Boring	Sample	e Depth	Preconsolidation Pressure	Compression Index	Recompression Index	Moisture Content (%)	Dry Unit Weight	Bulk Unit Weight	Initial Void Ratio
	Number	Start	End	σ' _p	Cc	Cr	w (%)	γd		e ₀
		ft, BGS	ft, BGS	psf				pcf	pcf	
Ι	GB-4	35	37.5	5,028	0.12	0.02	19.7	106.9	128.0	0.547
II	GB-1	15	17.5	1,965	0.15	0.01	44.3	76.5	110.4	1.163
II	GB-2	10	12	1,401	0.14	0.01	43.5	78.2	112.2	1.117
IV	GB-1	100	101	14,103	0.11	0.04	15.1	116.9	134.6	0.415

TABLE 1. SUMMARY OF CONSOLIDATION PROPERTIES OF LAYERS I, II, AND IV

NOTES

1.) The consolidation parameters for settlement calculation are obtained from the table above. In case of Layer II, the average consolidation parameters from the two tests is adopted for the analysis, except in cases of Sections AA' and CC', wherein the properties from the test at GB -1 and GB-2 are adopted, respectively.

Borehole	Depth (ft)	Sample Elevation (ft, MSL)	Blow Counts (N, blows per ft)	N ₆₀ (Use C _{ER} =0.75)	Consistency
GB-1	80	3155	25	18.75	Medium Dense
GB-1	90	3145	Refusal	-	Very Dense
GB-2	45	3199	Refusal	-	Very Dense
GB-2	50	3194	Refusal	-	Very Dense
GB-2	60	3184	Refusal	-	Very Dense
GB-4	70	3181	Refusal	-	Very Dense
GB-4	75	3176	Refusal	-	Very Dense
GB-4	80	3171	Refusal	-	Very Dense
GB-4	85	3166	Refusal	-	Very Dense
GB-4	90	3161	Refusal	-	Very Dense
GB-4	95	3156	Refusal	-	Very Dense

TABLE 2. CONSISTENCY OF LAYER III BASED ON STANDARD PENETRATION TEST BLOW COUNTS

NOTES

1.) N_{60} denotes the SPT N value corrected for the effects of hammer energy ratio (C_{ER}), borehole diameter (C_B), sampling method (C_S), and rod length (C_R).

2.) The correction factors for the SPT N value are assumed as C_{ER} =0.75, C_B =1.0, C_S =1.0, and C_R =1.0.

3.) Consistency of the SPT split spoon sample is determined based on N_{60} value, per Kulhawy and Mayne (1990), p. 2-19.

TABLE 3. ESTIMATION OF UNIT WEIGHT OF LAYER III (KULHAWY AND MAYNE, 1990)

Table 2-8

The search of th	TYPICAL	SOIL	UNIT	WEIGHTS
--	---------	------	------	---------

	Part	pproximation	te (mm)	Uniformity	Vote	Butle	0	ed Unit Weig	ht		
Coll Turne		J.	2 Anes/	contratent	voia	Ratio	pry,	γdry/γw	Saturated,	$\gamma_{\rm sat}/\gamma_{\rm W}$	
Soll Type	Dmax	D _{min}	D10	D ₆₀ /D ₁₀	e max	emin	Min.	Max,	Min.	Max.	
Uniform granular soil											
Equal spheres (theoretical)			-	1.0	0.92	0.35					
Standard Ottawa sand	0.84	0.59	0.67	1 1	0.80	0.50	1 67	1 74	1		
Clean, uniform sand	-			1 2 to 2 0	1.00	0.50	1.4/	1.70	1.49	2.10	
Uniform, inorganic silt	0.05	0.005	0.012	1.2 to 2.0	1 10	0.40	1.33	1.89	1.35	2.18	
				1.2 00 2.0	1,10	0.40	1.20	1.89	1.30	2,18	
Well-graded granular soil											
Silty sand	2.0	0:005-	0.02	5 to 10	0.90	0.30	1 10	2.04	1.41	0.00	
Clean, fine to coarse sand	2.0	0.05	0.09	4 to 6	0.95	0.20	1 36	2.04	1.41	2.28	
Micaceous sand	-	-			1.20	0.40	1 22	1 02	1.30	2.3/	
Silty sand and gravel	100	0.005	0.02	15 to 300	0.85	0.14	1 43	2 34	1.23	2.21	
				10 00 000	4,65	0.114	1.45	2.34	1.44	2.48	
Silty or sandy clay	2.0	0.001	0.003	10 to 30	1.80	0.25	0.96	2 16	1 60	0.96	
Cap-graded silty clay w. gravel or larger	250	0.001			1.00	0.20	1 35	2 24	1.00	2.30	
dell-graded gravel, sand, silt, and clay	250	0.001	0.002	25 to 1000	0.70	0.13	1 60	2.24	1.04	2.42	
			01002	10 10 1000	0.70	0.10	1,00	2.31	2.00	2.50	
Clay (30 to 50% < 2μ size)	0.05	0.54	0.001		2 40	0.50	0.80	1 20	1 61	0.10	
Colloidal clay (over 50% < 2µ size)	0.01	10Å	-		12.00	0.60	0.00	1.79	1,51	2:13	
		1011			12,00	0.00	0.21	1.70	1.14	2.05	
)rganic silt	-			-	3.00	0.55	0.64	1 76	1 20	0.10	
Organic clay (30 to $50\% < 2\mu$ size)					4.40	0.70	0.49	1.70	1.39	2.10	
					4140	0.70	0.40	1.00	1.30	2,00	

Source: Hough (26), pp. 34, 35.

NOTES

1.) Based on the material consistency reported in Table 2, the relative density of Layer III is assumed as 85% to 90%. Therefore, the bulk unit weight is estimated as: (1.41+0.875×(2.28-1.41))×62.4 pcf = 135 pcf.

Borehole	Depth (ft)	Sample Elevation (ft, MSL)	Blow Counts (N, blows per ft)	Effective Vertical Stress (psf)	Constrained Modulus (ksf)
GB-1	80	3155	25	3968	430
GB-1	90	3145	Refusal	4694	470
GB-2	45	3199	Refusal	2232	330
GB-2	50	3194	Refusal	2595	350
GB-2	60	3184	Refusal	3321	400
GB-4	70	3181	Refusal	4112	440
GB-4	75	3176	Refusal	4475	460
GB-4	80	3171	Refusal	4838	480
GB-4	85	3166	Refusal	5201	500
GB-4	90	3161	Refusal	5564	510
GB-4	95	3156	Refusal	5927	530
	Ave	rage constraine	d elastic modulus	s for Layer III	445

TABLE 4. SUMMARY OF COMPRESSIBILITY PROPERTIES OF LAYER III

NOTES

1.) Constrained modulus is determined based on effective vertical stress and porosity, per Kulhawy and Mayne (1990), p. 6-12.

Layer	Ι	II	III	IV	
Description	Bottom Ash	Paste	Silt and Silty Clay	Interbedded Shale/Sandstone	
USCS Classification ¹	-	-	ML, CL-ML	-	
Bulk Unit Weight (pcf)	128	112	135	135	
Primary Compression Index ²	0.12	0.15 at GB-1 (15')		0.11	
Fillinary Compression index	0.12	0.14 at GB-2 (10')	-	0.11	
Primary Recompression Index ²	0.02	0.01 at GB-1 (15') and GB-2 (10')	-	0.04	
Preconsolidation Pressure ^{2,3} (psf)	5,028	1,965 at GB-1 (15') 1,401 at GB-2 (10')	-	14,103	
Initial Void Ratio ²	0.547	1.163 at GB-1 (15') 1.117 at GB-2 (10')	-	0.415	
Ratio of Secondary Compression Index to Primary Compression Index ⁴	0.04±0.01	0.04±0.01	-	0.04±0.01	
Constrained Modulus ⁵ (ksf)	-	-	445	-	

TABLE 5. SUMMARY OF GEOTECHNICAL PROPERTIES OF SUBSURFACE MATERIALS

NOTES

1.) The Unified Soil Classification System (USCS) is limited to naturally occurring soils, per ASTM 2487. Based on the particle size and plasticity characteristics, the coal combustion residual materials could be assigned the following USCS classifications as an aid to describe them: (i) bottom ash (Layer I) – non-plastic, 39% to 49% fines, "silty sand (SM)"; and (ii) paste (Layer II) – plasticity index zero to 15%, "elastic silt (MH)"."

2.) Consolidation tests performed on samples from Layers I, II, and IV are used to determine the compressibility properties of these layers. In case of Layer II, settlement is calculated using consolidation parameters obtained from the sample at GB-1 (15') for section A-A', the sample at GB-2 (10') for section C-C', and the average value of the parameters from the two tests for sections B-B', D-D', and E-E'.

3.) The preconsolidation pressure reported is applicable for samples that are over-consolidated, i.e., maximum past vertical effective stress is greater than the current effective vertical stress.

4.) The ratio of secondary compression index to primary compression index is determined based on the value applicable for inorganic clays and silts, per Terzaghi et al. (1996).

5.) The secant constrained elastic modulus under drained conditions for Layer III is evaluated based on an empirical correlation with effective vertical stress and porosity, per Kulhawy and Mayne (1990), p.6-12.

FIGURES

Figure 1. Location of Critical Cross Sections shown on the Top of Liner Grading Plan

Figure 2. Location of Critical Cross Sections shown on Top of Final Cover Grading Plan

Figure 3. Drawing showing areal extent of baked shale layer (Bechtel Power Corporation, 1980)

Figure 4. Cross Section AA' along Leachate Collection Corridor

Figure 5. Cross Section BB' along Leachate Collection Corridor

Figure 6. Cross Section CC' along Leachate Collection Corridor

Figure 7. Cross Section DD' along Leachate Collection Corridor

Figure 8. Cross Section EE' along Leachate Collection Corridor

Figure 9. Proposed Liner and Cover System Profiles (Not to Scale)

Figure 10. Estimation of Modulus Number for Layer III (Kulhawy and Mayne, 1990)

ATTACHMENT A BOREHOLE LOGS

Pro Pro Pro	ject: (ject L ject N	Colstr ocatio lumbe	ip S n: C r: M	ES olstr E121	ip, N O	ЛТ	Geosyntec consultants	Log of Boring GB-1 Sheet 1 of 3									
Date Drille	^(s) Jun	ie 18-20), 201	5			Logged By Vinay Krishnan C	Checked By Ranjiv Gupta									
Drillir Meth	ng od Hol	low Ste	em Au	uger			Drill Bit Size/Type 4.25" ID, 7.625" OD Total Depth of Borehole 131.5 ft-bgs										
Drill F	^{Rig} CM	E 850					Drilling Contractor Yellow Jacket Drilling Services	Approximate Surface Elevation 3234.8 ft ,	234.8 ft, MSL								
Grou and [ndwater Date Me	Level	Not E	Incou	ntere	d	Sampling Method(s) Split Spoon and Shelby Tube	Hammer Data Automatic Trip H	lamm	ner							
Borel Back	hole Be	entonite Ittings	e chip	ps and	l bore	ehole	Location EHP Cell J										
Depth (feet)	Elevation (feet, MSL)	Sample Number	Sample Type	Blows Per Foot (N)	Material Type		MATERIAL DESCRIPTION		Moisture Content (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing No. 200 Sieve					
0	3234.8 —	0-1.5		2	MH	Paste: Ela	te: Elastic SILT, light gray, very soft, wet										
- 5 - 10 - -	- - - - - - - - - - - - - - - - - - -	3-4.5 5-6.5 6.5-8 8-9.5 9.5-11 11-12.5		4 20 30 27 33 49	мн мн мн мн мн	Paste: Ela Paste: Ela Paste: Ela Paste: Ela Paste: Ela Paste: Ela	aste: Elastic SILT, light gray, soft, wet aste: Elastic SILT, gray, wet, very stiff, 99.8% silty fines aste: Elastic SILT, gray, moist to wet, very stiff aste: Elastic SILT, light gray, moist to wet, very stiff aste: Elastic SILT, gray, wet, hard aste: Elastic SILT, light gray, moist, hard										
- 15 - - -	- 3219.8 — - -	15-17	X		мн	 _ Paste: Ela - -	astic SILT, light gray, dry										
20	3214.8	20-21.5	Σ	51	МН	Paste: Ela 	astic SILT, light gray, wet, very hard		52.7								
25	3209.8 —	25-26.5	Σ	21	мн	Paste: Ela - -	astic SILT, gray, dry, very stiff										
30 — - -	3204.8	30-31.5		16	мн	_ Paste: Ela	astic SILT, gray, wet, very stiff		75.2								
35 - - -	3199.8	35-36.5	\mathbf{Z}	27	мн	 _ Paste: Ela _	astic SILT, light gray, wet, very stiff, non-plastic, 100	0% silty fines	52.4		NP	100					
40 - -	3194.8 — - -	40-41.5	\mathbf{Z}	38	мн	 _ Paste: Ela -	astic SILT, light gray, wet, hard		48.4								
45	- 3189.8 — - -	45-46.5	\mathbf{Z}	46	мн	 _ Paste: Ela - -	astic SILT, dark gray, dry, hard, sulfur odor	-									
50	3184.8																

Project: Colstrip SES

Project Location: Colstrip, MT

Depth (feet)	Elevation (feet, MSL)	Sample Number	Sample Type	Blows Per Foot (N)	Material Type	MATERIAL DESCRIPTION	Moisture Content (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing No. 200 Sieve
50 <u>-</u>	3184.8 —	50-51	Ä		MH	Paste: Elastic SILT, dark gray, moist to wet	49.2	_	_	
- - 55 - -	- - 3179.8 — -	55-56.5	Ø	10	мн	Paste: Elastic SILT, dark gray, wet, stiff, 96.2% silty fines	- - - - 96.6	67	11	96.2
- 	- 3174.8 — - -	60-61.5	Ø	28	МН	Paste: Elastic SILT, dark gray, wet, very stiff, non-plastic, 87.7% silty fines	- - - 74.6		NP	87.7
- 	3169.8 — - - - - - - - - - - - - - - - - - - -	70-71.5	Z	50 (4")	мн	Paste: Elastic SILT, dark gray, moist to wet, very hard	- - - - - - - - - - - - - - - - - - -			
- - 75 - - -	- - 3159.8 - -					· · · ·				
- 30 - - - - - - - - 	- 3154.8 — - - - 3149.8 —	80-81.5	Ø	25	ML	SILT with sand, trace gravel, clinker, and gray coal ash paste, orange to brown, moist, very stiff, 75.4% silty fines	- 23.9 - -	27	5	75.4
- - - - -	- - - 3144.8 - -	90-91.5	Z	50 (3")	CL	Lean CLAY, trace gravel, brown to gray, moist, very hard				
- 	- 3139.8 - - -					- - - -				

Project: Project Project	Colsti Locatic Numbe	rip S on: C er: M	ES olstr E121	rip, N IO	ЛТ	Geosyntec consultants engineers scientists innovators	Log of Borir Sheet 1	ng (of 2	GB 2	-2					
Date(s) Drilled	une 21 &	23, 2	015			Logged By Vinay Krishnan Ch	necked By Ranjiv Gupta								
Drilling Method H	ollow St	em Ai	uger			Drill Bit Size/Type 4.25" ID, 7.625" OD Total Depth of Borehole 75 ft-bgs									
Drill Rig Type	ME 850			pproximate urface Elevation 3244.3 ft,	MSL										
Groundwa	ter Level	Not E	Incou	ntered	d	Sampling Mathada Split Spoon and Shelby Tube	ammer Automatic Trip H	amm	er						
Borehole Backfill	Bentonit	e chip	ps and	d bore	hole	Location EHP Cell J - N 604,807.53; E 2,720,994.25									
Depth (feet) Elevation (feet, MSL)	Sample Number	Sample Type	Blows Per Foot (N)	Material Type		MATERIAL DESCRIPTION	Moisture Content (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing No. 200 Sieve					
0-3244.3	0-1.5		5	CL-ML	Paste: Silt	y CLAY, light gray, moist, firm, non-plastic, 98.9% fir	38.5		NP	98.9					
1	1.5-3	Δ	13	MH	Paste: Ela	stic SILT, light gray, moist, stiff									
5-3239.3	- 3-4.5 4 5-6	\mathbb{R}	8	мн	Paste: Ela	stic SILT, light gray, wet, firm stic SILT, light gray, moist, soft	_	33 1							
- - 10-3234.3 - -	- - - 10-12	X		мн	- - _ Paste: Ela -	Paste: Elastic SILT, light gray, moist									
5 - 3229.3 - -	15-16.5 	Z	18	мн	 _ Paste: Ela - -	stic SILT, light gray, moist, very stiff		40.4							
20 - 3224.3 	20-21.5 	Z	8	мн	 _ Paste: Ela - -	stic SILT, light gray to gray, wet, firm		52.6							
- 3219.3 - -	- - 25-26.5	\mathbf{Z}	33	мн	- _ Paste: Ela -	aste: Elastic SILT, light gray, dry, hard									
30 - 3214.3 	- - 30-31.5	Z	14	мн	 _ Paste: Ela - -	stic SILT, light gray to gray, wet, stiff		63.5							
35 — 3209.3 - -	- 35-36	×		мн	 _ Paste: Ela - -	stic SILT, gray, dry to moist	-								
40 - 3204.3 -	- 40-41.5	Z	21	CL-ML	Paste: Silt and black	y CLAY; trace sand, gravel; variable color including dry, stiff	gray, orange brown,								
45 — 3199.3 -	45-46.5		56	SP	- _ Poorly-gra _	ded SAND, trace brown clay, light gray to brown, mo	oist, very hard	26							
50 - 3194.3	-				-										

Project: Colstrip SES Project Location: Colstrip, MT Project Number: ME1210 Date(s)								Geosyntec C Log of E consultants She						of Bor Sheet	oring GB-4 et 1 of 3						
Date(Drille	^(s) Jur	ne 15-17	7, 201	15			Logg	ged By	/ Vina	y Krisł	nnan			Checked	By Rai	njiv Gupt	a				
Drillin Methe	^{ng} Hol	llow Ste	em A	uger			Drill Size/	Bit /Type	4.25"	ID, 7.6	625" OD			Total De of Boreh	^{pth} 145	ft-bgs					
Drill Rig Type CME 850 Drilling Contractor Yellow Jacket Drilling Services Surface Elevation 3251.0										t, MSL	-										
Groundwater Level and Date Measured Not Encountered Sampling Method(s) Split Spoon and Shelby Tube Hammer Data Automatic Trip										Hamn	ner										
Boreł Backi	hole Β α fill cι	entonite uttings	e chi	ps and	bore	ehole	Loca	Location EHP Cell J - N 605,172.93; E 2,721,551.60													
Depth (feet)	Elevation (feet, MSL)	Sample Number	Sample Type	Blows Per Foot (N)	Material Type			MATERIAL DESCRIPTION									Moisture Content (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing No. 200 Sieve	
	3246 — - - - - - - - - - - - - - - - - - - -	9-10.5	Z	50 (4")	SM	- - - - - - Bottom as	ash: Sil	lty SA	AND, g	ıray, dry	y to mois	st, very l	nard				- - - - - - - - - - - - - - - - - - -				
- - 15 - - -	3236 — -	15-16.5	Z	50 (10")	SM	- Bottom as gravel	ish: Sil	lty SA	ND wi	ith clay	, gray, d	ry to mo	ist, very l	nard, non	-plastic	, some	- - - 16.8		NP	49.	
- 20 - -		20-21.5	Z	50 (3")	SM	 _ Bottom as - -	ish: Sil	lty SA	AND, g	ıray, dry	y to mois	st, very l	nard				- - 17 -				
25 — - -	- 3226	25-26.5	Z	50 (3")	SM	- _ Bottom as - -	Bottom ash: Silty SAND, gray, dry to moist, very hard										_ _19.4				
30 — 30 — -		30-31.5	Z	5	SM	- _ Bottom as -	ish: Sil	lty SA	AND, g	ray, mo	oist, firm	, trace c	linker and	d reddish	clay, no	on-plastic	- -23.7		NP	39.	
35 — - -	3216 — -	35-37	X		SC	- _ Bottom as -	ish: Cla	ayey	SAND), reddis	sh browr	n, moist					- -22.0				
40		40-41.5	Z	50 (5")	мн	- _ Paste: Ela -	lastic S	SILT,	light g	ray, mo	oist, very	/ hard, t	race bent	onite			22.3				
45 — 45 — -	3206 — -	45-46.5	Z	50 (4")	мн	- _ Paste: Ela -	lastic S	SILT,	gray, ı	moist, v	very har	d									
<u>ل</u> م	3201 —	1				Ľ											1				

Project: Colstrip SES

Project Location: Colstrip, MT

iect	Number:	ME1210	

epth (feet)	evation (feet, MSL)	ample Number	ample Type	ows Per Foot (N)	aterial Type		oisture Content (%)	quid Limit (%)	asticity Index (%)	Passing No. 200 Sieve
<u>о</u> 50-	ш 3201 —	ဟိ 50-51 5	s S	E	Z CL-ML	Paste: Silty CLAY, light gray to brown, wet, very hard	Σ	Ē	Ы	%
- - - 55 - -	- 3196 — -	55-56.5		50 (3")	CL-ML	Paste: Silty CLAY, light gray, moist, very hard				
- 60 - - -	3191 — - -	60-61.5	N	50 (5")	мн	Paste: Elastic SILT, gray, moist, very hard				
65	- 3186 —	65-66.5		50 (4")	мн	Paste: Elastic SILT, light gray, dry to moist, very hard	-			
4	-	66.5-67.5	×		мн	Paste: Elastic SILT, light gray, moist	-23.5			
- 70 - -		70-71.5	Ø	50 (2")	CL-ML	Silty CLAY, light brown, moist to wet, very hard	_ 28.4 	24	7	84.
- 75 -		75-76.5	Z	50 (2")	SM	Silty SAND, light gray, dry, very hard	-			
- 80 - -	3171 — -	80-81.5	Z	50 (3")	SM	Silty SAND, gray to brown, dry, very hard	- 			
- 85 — - -		85-86.5	Ø	50 (5")	SC	Clayey SAND, trace shale, brown, wet, very hard				
- 90 - - - -	3161 — - -	90-91.5	Z	50 (3")	SC	Clayey SAND, light brown, moist, very hard	_ 28.5 			
95 — 95 — - -	3156 — - -	95-96.5	Z	50 (2")	CL	Lean CLAY, trace clayey sand, brownish gray, moist, very hard	_ 25.7 			
ل ₀₀	- 3151 —					-				

ATTACHMENT B

SETTLEMENT CALCULATION FOR EHP CELL J

SETTLEMENT OF CLAY LINER DUE TO PLACEMENT OF WASTE - SECTION AA'

	Deline #	1	2	2	4	5	6	7		0	10	11	12	12	14	15	16
DISTANCE	Found #	1	24	125	174	210	207	210	267	429	10	11	512	522	520	546	714
	Coordinate along critical section (it)	0	54	155	1/4	219	287	518	307	428	404	4/8	512	525	229	540	/14
	Cover Soil (y _{cover} , pcf)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Sublayer 1: Bottom Ash (pcf)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128
	Sublayer 2: Coal Ash Paste (pcf)	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
UNIT WEIGHTS	Sublayer 3: Silt and Silty Clay (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Sublayer 4: Stiff Paste (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Groundwater (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	Final Cover Elevation (ft. MSL)	3290.0	3300.6	3332.5	3344.8	3359.0	3380.2	3390.0	3380.0	3370.0	3360.0	3356.2	3347.2	3344.2	3340.0	3338.1	3290.0
	Base Grade Elevation (ft, MSL)	3290.0	3280.0	3250.0	3240.0	3237.0	3236.0	3235.5	3234.7	3233.8	3233.2	3233.0	3233.0	3233.0	3237.9	3240.0	3290.0
	Bottom Ash to Coal Ash Paste Interface (ft. MSL)	3290.0	3280.0	3250.0	3240.0	3237.0	3236.0	3235.5	3234.7	3233.8	3233.2	3233.0	3233.0	3233.0	3237.9	3240.0	3290.0
ELEVATIONS	Coal Ash Paste to Silt/Silty Clay Interface (ft, MSL)	3250.0	3240.0	3205.9	3192.7	3177.5	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8	3154.8
	Silt/Silty Clay to Stiff Paste Interface (ft, MSL)	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8	3144.8
	Stiff Paste to "Bedrock" Interface (ft. MSL)	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8	3104.8
	Groundwater Table (ft, MSL)	3240.0	3240.0	3240.0	3240.0	3237.0	3236.0	3235.5	3234.7	3233.8	3233.2	3233.0	3233.0	3233.0	3233.0	3233.0	3233.0
	Thickness of Final Cover (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Thickness of Additional Coal Ash Paste (ft)	0.0	17.1	79.0	101.3	118.5	140.8	151.0	141.8	132.7	123.3	119.7	110.7	107.7	98.6	94.6	0.0
	Thickness of Additional Bottom Ash (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAYER THICKNESS	Sublayer 1: Bottom Ash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sublayer 2: Coal Ash Paste	40.0	40.0	44.1	47.3	59.5	81.2	80.7	79.9	79.0	78.4	78.2	78.2	78.2	83.1	85.2	135.2
	Sublayer 3: Silt and Silty Clay	105.2	95.2	61.1	47.9	32.7	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	Sublayer 4: Stiff Paste	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
	Elevation of midpoint of sublayer (ft msl)	3290.0	3280.0	3250.0	3240.0	3237.0	3236.0	3235.5	3234.7	3233.8	3233.2	3233.0	3233.0	3233.0	3237.9	3240.0	3290.0
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Initial effective stress (psf)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Final effective stress (psf)	432	2349	9275	11782	13702	16197	17347	16311	15298	14239	13835	12828	12493	11477	11023	432
	Preconsolidation pressure (if overconsolidated, psf)	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028
TIDI AVED 1. DOTTOM ACU	Initial Void Ratio	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547
SUBLATER I: BOTTOM ASH	Compression Index	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Recompression Index	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Secondary Compression Index	0.0008	0.0008	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0008
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Secondary compression (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Settlement of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	Elevation of midpoint of sublayer (ft msl)	3270.0	3260.0	3228.0	3216.3	3207.3	3195.4	3195.1	3194.8	3194.3	3194.0	3193.9	3193.9	3193.9	3196.3	3197.4	3222.4
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	12.0	23.7	29.7	40.6	40.3	40.0	39.5	39.2	39.1	39.1	39.1	36.7	35.6	10.6
	Initial effective stress (psf)	2240.0	2240.0	1717.2	1173.9	1475.1	2012.7	2000.7	1982.1	1958.4	1944.9	1939.4	1939.4	1939.4	2365.5	2549.8	6909.8
	Final effective stress (psf)	2672.0	4588.7	10991.9	12955.4	15177.5	18209.3	19347.5	18293.0	17256.4	16184.0	15774.5	14767.6	14432.0	13842.2	13573.1	7341.8
	Preconsolidation pressure (if overconsolidated, psf)	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965
SUBLAVER 2: COAL ASH PASTE	Initial Void Ratio	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
SOBERTER 2. COME TISTITISTE	Compression Index	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Recompression Index	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Secondary Compression Index	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
	Ultimate settlement due to primary consolidation (ft)	0.2	0.9	2.3	2.7	3.7	5.4	5.5	5.3	5.2	5.0	4.9	4.8	4.7	4.4	4.3	0.2
	Secondary compression (ft)	0.2	0.2	0.2	0.2	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.7
	Total Settlement of sublayer (ft)	0.4	1.1	2.5	3.0	4.0	5.8	5.9	5.7	5.6	5.4	5.3	5.1	5.1	4.8	4.7	0.9
	Elevation of midpoint of sublayer (ft msl)	3197.4	3192.4	3175.4	3168.7	3161.2	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8	3149.8
	Groundwater depth at midpoint of sublayer (ft)	42.6	47.6	64.6	71.3	75.8	86.2	85.7	84.9	84.0	83.4	83.2	83.2	83.2	83.2	83.2	83.2
SUBLAYER 3: SILT AND SILTY CLAY	Initial effective stress (psf)	8,923	7,936	5,029	4,085	4,138	4,388	4,364	4,327	4,280	4,253	4,242	4,242	4,242	4,789	5,026	10,626
	Final effective stress (psf)	9,355	10,284	14,304	15,867	17,840	20,585	21,711	20,638	19,578	18,492	18,077	17,070	16,734	16,266	16,049	11,058
	Constrained modulus of layer (psf)	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000
	Estimated settlement by elastic method (ft)	0.1	0.5	1.3	1.3	1.0	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.0
	Elevation of midpoint of sublayer (ft msl)	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8	3124.8
	Groundwater depth at midpoint of sublayer (ft)	115.2	115.2	115.2	115.2	112.2	111.2	110.7	109.9	109.0	108.4	108.2	108.2	108.2	108.2	108.2	108.2
Gra Ini Fir	Initial effective stress (psf)	14193.5	12843.5	8699.7	7274.9	6777.7	6203.4	6179.5	6142.2	6094.8	6067.7	6056.7	6056.7	6056.7	6604.1	6840.7	12440.7
	Final effective stress (psf)	14625.5	15192.2	17974.4	19056.4	20480.1	22400.0	23526.3	22453.1	21392.8	20306.9	19891.9	18885.0	18549.4	18080.7	17864.1	12872.7
	Preconsolidation pressure (if overconsolidated, psf)	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103
SUBLAYER 4: STIFF COAL ASH PASTE	Initial Void Ratio	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
	Compression Index	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	Recompression Index	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	Secondary Compression Index	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0016
	Ultimate settlement due to primary consolidation (ft)	0.0	0.1	0.6	0.7	0.9	1.0	1.1	1.0	1.0	0.9	0.9	0.8	0.8	0.7	0.7	0.0
	Secondary compression (ft)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
	Total Settlement of sublayer (ft)	0.3	0.4	0.8	1.0	1.1	1.2	1.3	1.3	1.2	1.1	1.1	1.0	1.0	0.9	0.9	0.1
	Total Settlement (ft)	0.8	1.9	4.6	5.2	6.1	7.4	7.6	7.4	7.1	6.8	6.7	6.5	6.4	6.0	5.9	1.0
	Base Grade Elevation (ft, MSL)	3289.2	3278.1	3245.4	3234.8	3230.9	3228.6	3227.9	3227.4	3226.7	3226.4	3226.3	3226.5	3226.6	3231.9	3234.1	3289.0
TOTAL SETTLEMENT AND STRAINS	Intial Liner Segment Length, L _o (ft)		35.200	105.601	40.625	45.100	67.508	31.129	48.589	61.841	35.338	14.377	33.750	11.250	16.451	7.113	176.002
TOTAL SETTLEMENT AND STRAINS	Post Settlement Liner Segment Length, L _f (ft)		35.547	106.382	40.781	45.168	67.541	31.133	48.586	61.837	35.334	14.375	33.751	11.250	16.559	7.163	177.435
	Post Settlement Liner Strain (- comp, + tension)		0.984%	0.740%	0.384%	0.151%	0.049%	0.014%	-0.007%	-0.006%	-0.009%	-0.009%	0.003%	0.003%	0.658%	0.708%	0.815%
	Differential Settlement (%)		3.29%	2.50%	1.52%	1.98%	1.95%	0.71%	-0.52%	-0.44%	-0.79%	-0.77%	-0.74%	-0.76%	-2.15%	-2.30%	-2.75%
	Initial Grade (%)	-	-	-	-	-	1.55%	1.55%	1.55%	1.55%	1.55%	1.55%	-	-	-	-	-
LEACHATE COLLECTION PIPE GRADE	Post Settlement Grade (%)	-	-	-	-	-	3.49%	2.26%	1.03%	1.11%	0.75%	0.77%	-	-	-	-	-
	Average Initial Grade (%)											1.55%					
	Average Post Settlement Grade (%)											1.18%					

SETTLEMENT OF CLAY LINER DUE TO PLACEMENT OF WASTE - SECTION BB'

	Point #	1	2	2	4	5	6	7		0	10	11	12	12	14	15	16
DISTANCE	Coordinate along critical section (ft)	1	11	45	120	152	196	120	451	472	512	595	647	714	726	742	017
	Coordinate along critical section (it)	0	11	40	129	152	160	420	451	4/3	512	101	047	/14	720	/43	917
	Cover Soil (y _{cover} , pcf)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Sublayer 1: Bottom Ash (pcf)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128
INT NEIGHER	Sublayer 2: Coal Ash Paste (pcf)	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
UNIT WEIGHTS	Sublayer 3: Silt and Silty Clay (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Sublayer 4: Stiff Paste (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Groundwater (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	Final Cover Elevation (ft, MSL)	3290.0	3293.7	3304.7	3332.3	3339.6	3350.7	3430.0	3430.0	3423.4	3411.6	3389.6	3371.1	3350.8	3347.4	3342.3	3290.0
	Base Grade Elevation (ft, MSL)	3290.0	3290.0	3278.6	3250.0	3244.0	3243.0	3239.3	3239.0	3238.6	3238.0	3236.9	3236.0	3235.0	3235.0	3242.0	3290.0
ELEVATIONS	Bottom Ash to Coal Ash Paste Interface (ft, MSL)	3290.0	3290.0	3278.6	3250.0	3244.0	3243.0	3239.3	3239.0	3238.6	3238.0	3236.9	3236.0	3235.0	3235.0	3242.0	3290.0
ELEVATIONS	Coal Ash Paste to Silt/Silty Clay Interface (ft, MSL)	3260.0	3255.0	3240.0	3202.5	3192.5	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7	3177.7
	Silt/Silty Clay to Stiff Paste Interface (ft, MSL)	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7	3157.7
	Stiff Paste to "Bedrock" Interface (ft, MSL)	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7	3137.7
	Groundwater Table (ft, MSL)	3244.0	3244.0	3244.0	3244.0	3244.0	3243.0	3239.3	3239.0	3238.6	3238.0	3236.9	3236.0	3235.0	3235.0	3235.0	3235.0
	Thickness of Final Cover (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Thickness of Additional Coal Ash Paste (ft)	0.0	0.2	22.6	78.8	92.1	104.2	187.2	187.5	181.2	170.0	149.2	131.6	112.3	108.9	96.8	0.0
	Thickness of Additional Bottom Ash (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAYER THICKNESS	Sublayer 1: Bottom Ash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sublayer 2: Coal Ash Paste	30.0	35.0	38.6	47.5	51.5	65.3	61.6	61.3	60.9	60.3	59.2	58.3	57.3	57.3	64.3	112.3
	Sublayer 3: Silt and Silty Clay	102.3	97.3	82.3	44.8	34.8	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
	Sublayer 4: Stiff Paste	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
	Elevation of midpoint of sublayer (ft msl)	3290.0	3290.0	3278.6	3250.0	3244.0	3243.0	3239.3	3239.0	3238.6	3238.0	3236.9	3236.0	3235.0	3235.0	3242.0	3290.0
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Initial effective stress (psf)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Final effective stress (psf)	432	452	2967	9255	10751	12098	21397	21434	20732	19475	17141	15166	13008	12630	11279	432
	Preconsolidation pressure (if overconsolidated, psf)	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028
TIBLAVER 1- BOTTOM ASH	Initial Void Ratio	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547
SOBLATER I. BOTTOM ASIT	Compression Index	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Recompression Index	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Secondary Compression Index	0.0008	0.0008	0.0008	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0008
	Ultimate settlement due to primary consolidation (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Secondary compression (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Settlement of sublayer (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Elevation of midpoint of sublayer (ft msl)	3275.0	3272.5	3259.3	3226.3	3218.3	3210.4	3208.5	3208.3	3208.2	3207.9	3207.3	3206.9	3206.4	3206.4	3209.9	3233.9
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	17.8	25.8	32.7	30.8	30.6	30.5	30.2	29.6	29.2	28.7	28.7	25.2	1.2
	Initial effective stress (psf)	1680.0	1960.0	2160.0	1552.4	1277.2	1619.4	1528.1	1519.7	1511.5	1496.6	1469.1	1445.8	1421.0	1421.0	2031.4	6217.0
	Final effective stress (psf)	2112.0	2411.7	5127.0	10807.5	12027.8	13717.3	22924.7	22954.0	22243.4	20971.7	18609.9	16611.5	14429.3	14051.1	13310.1	6649.0
	Preconsolidation pressure (if overconsolidated, psf)	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683
STIDI AVED 2. COAL ASH DASTE	Initial Void Ratio	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14
SUBLATER 2. COAL ASH FASTE	Compression Index	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Recompression Index	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Secondary Compression Index	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
	Ultimate settlement due to primary consolidation (ft)	0.2	0.2	1.0	2.7	3.1	4.2	4.9	4.9	4.8	4.6	4.3	4.1	3.8	3.7	3.7	0.2
	Secondary compression (ft)	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.6
	Total Settlement of sublayer (ft)	0.4	0.4	1.2	2.9	3.4	4.5	5.2	5.2	5.1	4.9	4.6	4.4	4.1	4.0	4.0	0.8
	Elevation of midpoint of sublayer (ft msl)	3208.9	3206.4	3198.9	3180.1	3175.1	3167.7	3167.7	3167.7	3167.7	316 7.7	3167.7	3167.7	3167.7	3167.7	3167.7	3167.7
	Groundwater depth at midpoint of sublayer (ft)	35.2	37.7	45.2	63.9	68.9	75.3	71.6	71.3	70.9	70.3	69.2	68.3	67.3	67.3	67.3	67.3
SUBLAVER 3: SULT AND SULTV CLAV	Initial effective stress (psf)	8,072	8,138	7,058	4,357	3,818	3,965	3,782	3,765	3,749	3,719	3,664	3,618	3,568	3,568	4,352	9,728
SUBLATER S. SILT AND SILT CEAT	Final effective stress (psf)	8,504	8,590	10,025	13,612	14,568	16,063	25,179	25,200	24,481	23,194	20,805	18,783	16,576	16,198	15,631	10,160
	Constrained modulus of layer (psf)	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000
	Estimated settlement by elastic method (ft)	0.1	0.1	0.5	0.9	0.8	0.5	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.6	0.5	0.0
	Elevation of midpoint of sublayer (ft msl)	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7	3147.7
	Groundwater depth at midpoint of sublayer (ft)	96.3	96.3	96.3	96.3	96.3	95.3	91.6	91.3	90.9	90.3	89.2	88.3	87.3	87.3	87.3	87.3
Gra Ini Fin Pre	Initial effective stress (psf)	12511.4	12396.4	10771.4	6708.9	5806.9	5416.9	5234.1	5217.5	5200.9	5171.3	5116.3	5069.7	5020.1	5020.1	5804.1	11180.1
	Final effective stress (psf)	12943.4	12848.1	13738.4	15964.0	16557.5	17514.7	26630.8	26651.7	25932.9	24646.3	22257.1	20235.4	18028.3	17650.1	17082.7	11612.1
	Preconsolidation pressure (if overconsolidated, psf)	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103
STIDLAVED A STILL COAL ASH DASTE	Initial Void Ratio	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
SUBLATER 4. STIFF COAL ASH FASTE	Compression Index	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	Recompression Index	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	Secondary Compression Index	0.0016	0.0016	0.0016	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0016
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.1	0.3	0.3	0.4	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.4	0.3	0.0
	Secondary compression (ft)	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
	Total Settlement of sublayer (ft)	0.0	0.0	0.1	0.4	0.4	0.5	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.5	0.5	0.0
	Total Settlement (ft)	0.5	0.5	1.9	4.2	4.6	5.5	7.0	6.9	6.8	6.6	6.1	5.7	5.2	5.1	5.0	0.9
	Base Grade Elevation (ft, MSL)	3289.5	3289.5	3276.7	3245.8	3239.4	3237.5	3232.4	3232.0	3231.8	3231.5	3230.9	3230.3	3229.8	3229.9	3237.0	3289.1
	Intial Liner Segment Length, Lo (ft)		11.250	35.632	89.081	23.286	33.765	242.820	22.086	22.003	39.380	73.133	61.882	67.507	11.250	18.269	180.861
TOTAL SETTLEMENT AND STRAINS	Post Settlement Liner Segment Length Le(ff)		11 250	36 075	89.875	23 394	33 803	242 845	22.086	22.001	39 377	73 128	61 877	67 502	11 250	18 318	181 994
P	Post Settlement Liner Strain (- comp. + tension)		0.001%	1 242%	0.891%	0.461%	0.113%	0.011%	-0.001%	-0.007%	-0.008%	-0.008%	-0.008%	-0.008%	0.002%	0.265%	0.626%
	Differential Settlement (%)		0.34%	3.68%	2.68%	1.74%	2.64%	0.59%	-0.10%	-0.61%	-0.63%	-0.65%	-0.69%	-0.73%	-0.69%	-0.69%	-2.27%
	Initial Grade (%)	-	_	-	-	_	2.96%	1.52%	1 52%	1 52%	1.52%	1.52%	1.52%	1 48%	-	-	
LEACHATE COLLECTION PIPE GRADE	Post Settlement Grade (%)	-	-	-	-	-	5.60%	2.10%	1.42%	0.90%	0.89%	0.87%	0.83%	0.75%	-	-	-
	Average Initial Grade (%)													1.51%			
	Average Post Settlement Grade (%)													1.44%			

SETTLEMENT OF CLAY LINER DUE TO PLACEMENT OF WASTE - SECTION CC'

DISTANCE	Point # Coordinate along critical section (ft)	1 0	2 129	3 146	4 169	5 199	6 218	7 370	8 431	9 530	10 594	11 759	12 765	13 804	14 827	15 855	16 893	17 934	18 949	19 986	20 996
	Cover Soil (Ycover, pcf)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Sublayer 1: Bottom Ash (pcf)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128
UNIT WEIGHTS	Sublayer 2: Coal Ash Paste (pcf)	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
CIVIT WEIGHTS	Sublayer 3: Silt and Silty Clay (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Sublayer 4: Stiff Paste (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Groundwater (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	Final Cover Elevation (ft, MSL)	3290.0	3332.1	3337.5	3344.9	3354.6	3360.7	3410.3	3430.0	3430.0	3410.8	3361.0	3359.3	3347.5	3340.7	3332.3	3321.0	3308.6	3304.1	3292.8	3290.0
	Base Grade Elevation (ft, MSL)	3290.0	3250.0	3250.0	3249.0	3248.5	3248.3	3245.9	3245.0	3243.5	3242.5	3240.0	3240.0	3240.0	3246.0	3253.3	3263.1	3273.9	3277.8	3287.6	3290.0
	Bottom Ash to Coal Ash Paste Interface (ft, MSL)	3290.0	3250.0	3250.0	3249.0	3248.5	3248.3	3245.9	3245.0	3243.5	3242.5	3240.0	3240.0	3240.0	3246.0	3253.3	3263.1	3273.9	3277.8	3287.6	3290.0
ELEVATIONS	Coal Ash Paste to Silt/Silty Clay Interface (ft, MSL)	3285.0	3250.0	3249.3	3248.5	3248.5	3240.0	3199.3	3199.3	3199.3	3199.3	3229.0	3230.0	3236.2	3239.7	3250.0	3260.0	3260.0	3250.0	3240.0	3236.6
	Silt/Silty Clay to Stiff Paste Interface (ft, MSL)	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3
	Stiff Paste to "Bedrock" Interface (ft, MSL)	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3	3169.3
	Groundwater Table (ft, MSL)	3250.0	3250.0	3250.0	3249.0	3248.5	3248.3	3245.9	3245.0	3243.5	3242.5	3240.0	3240.0	3240.0	3240.0	3240.0	3240.0	3240.0	3240.0	3240.0	3240.0
	Thickness of Final Cover (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Thickness of Additional Coal Ash Paste (ft)	0.0	78.6	84.0	92.4	102.6	109.0	160.9	181.5	183.0	164.7	117.5	115.8	104.0	91.2	75.4	54.4	31.2	22.8	1.8	0.0
	Thickness of Additional Bottom Ash (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAYER THICKNESS	Sublayer 1: Bottom Ash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sublayer 2: Coal Ash Paste	5.0	0.0	0.7	0.5	0.0	8.3	46.6	45.7	44.2	43.2	11.0	10.0	3.8	6.3	3.3	3.1	13.9	27.8	47.6	53.4
	Sublayer 3: Silt and Silty Clay	115.7	80.7	80.0	79.2	79.2	70.7	30.0	30.0	30.0	30.0	59.7	60.7	66.9	70.4	80.7	90.7	90.7	80.7	70.7	67.3
	Sublayer 4: Stiff Paste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Elevation of midpoint of sublayer (ft msl)	3290.0	3250.0	3250.0	3249.0	3248.5	3248.3	3245.9	3245.0	3243.5	3242.5	3240.0	3240.0	3240.0	3246.0	3253.3	3263.1	3273.9	3277.8	3287.6	3290.0
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Initial effective stress (psf)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Final effective stress (psf)	432	9231	9845	10777	11920	12635	18448	20759	20929	18883	13596	13406	12080	10651	8882	6524	3931	2987	629	432
	Preconsolidation pressure (if overconsolidated, psf)	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028
SUBLAYER 1- BOTTOM ASH	Initial Void Ratio	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547
SOBEATER I. BOTTOM ASH	Compression Index	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Recompression Index	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Secondary Compression Index	0.0008	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0008	0.0008	0.0008	0.0008
	Ultimate settlement due to primary consolidation (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Secondary compression (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Settlement of sublayer (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SUBLAYER 2: COAL ASH PASTE	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Preconsolidation pressure (if overconsolidated, psf) Initial Void Ratio Compression Index Recompression Index Secondary Compression Index Ultimate settlement due to primary consolidation (ft) Secondary compression (ft) Total Settlement of sublayer (ft)	3287.5 0.0 280.0 712.0 1401 1.12 0.14 0.01 0.004 0.0 0.0 0.0 0.0	3250.0 0.0 9231.2 1401 1.12 0.14 0.005 0.0 0.0 0.0 0.0	3249.7 0.3 16.1 9861.4 1401 1.12 0.14 0.001 0.0056 0.0 0.0 0.0	3248.8 0.3 12.4 10789.0 1401 1.12 0.14 0.001 0.0056 0.0 0.0 0.0	3248.5 0.0 1.1 11921.2 1401 1.12 0.14 0.01 0.0056 0.0 0.0 0.0	3244.1 4.1 204.8 12839.6 1401 1.12 0.14 0.01 0.0056 0.6 0.0 0.6	3222.6 23.3 1156.5 19604.5 1401 1.12 0.14 0.001 0.0056 3.6 0.2 3.8	3222.2 22.9 1133.6 21892.5 1401 1.12 0.14 0.01 0.0056 3.6 0.2 3.8	3221.4 22.1 1096.0 22024.6 1401 1.12 0.14 0.001 0.0056 3.5 0.2 3.7	3220.9 21.6 1071.9 19954.4 1401 1.12 0.14 0.001 0.0056 3.3 0.2 3.5	3234.5 5.5 273.0 13868.8 1401 1.12 0.14 0.001 0.0056 0.8 0.1 0.8	3235.0 5.0 248.0 13654.3 1401 1.12 0.14 0.001 0.0056 0.7 0.0 0.7	3238.1 1.9 94.8 12175.2 1401 1.12 0.14 0.01 0.0056 0.3 0.0 0.3	3242.9 0.0 352.5 11003.2 1401 1.12 0.14 0.01 0.0056 0.4 0.0 0.4	3251.7 0.0 186.7 9068.9 1401 1.12 0.14 0.01 0.0056 0.2 0.0 0.2	3261.6 0.0 174.2 6698.5 1401 1.12 0.14 0.01 0.0056 0.2 0.0 0.2	3266.9 0.0 776.5 4707.1 1401 1.12 0.14 0.01 0.0056 0.5 0.1 0.6	3263.9 0.0 1555.6 4543.0 1401 1.12 0.14 0.001 0.0056 0.9 0.1 1.0	3263.8 0.0 2663.1 3292.6 1401 1.12 0.14 0.01 0.0056 0.3 0.2 0.5	3263.3 0.0 2990.4 3422.4 1401 1.12 0.14 0.016 0.0056 0.2 0.3 0.5
SUBLAYER 3: SILT AND SILTY CLAY	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Constrained modulus of layer (psf) Estimated settlement by elastic method (ft)	3227.2 22.8 6,944 7,376 445,000 0.1	3209.6 40.4 2,930 12,160 445,000 1.7	3209.3 40.7 2,938 12,783 445,000 1.8	3208.9 40.1 2,900 13,676 445,000 1.9	3208.9 39.6 2,877 14,797 445,000 2.1	3204.7 43.6 2,976 15,611 445,000 2.0	3184.3 61.6 3,402 21,850 445,000 1.2	3184.3 60.7 3,356 24,115 445,000 1.4	3184.3 59.2 3,281 24,210 445,000 1.4	3184.3 58.2 3,233 22,115 445,000 1.3	3199.1 40.9 2,713 16,309 445,000 1.8	3199.7 40.3 2,699 16,106 445,000 1.8	3202.7 37.3 2,617 14,698 445,000 1.8	3204.5 35.5 3,242 13,893 445,000 1.7	3209.7 30.3 3,927 12,809 445,000 1.6	3214.7 25.3 4,889 11,413 445,000 1.3	3214.7 25.3 6,093 10,024 445,000 0.8	3209.7 30.3 6,665 9,652 445,000 0.5	3204.7 35.3 7,893 8,522 445,000 0.1	3203.0 37.0 8,212 8,644 445,000 0.1
SUBLAYER 4: STIFF COAL ASH PASTE	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Preconsolidation pressure (if overconsolidated, psf) Initial Void Ratio Compression Index Recompression Index Secondary Compression Index Ultimate settlement due to primary consolidation (ft) Secondary compression (ft) Total Settlement of sublayer (ft)	3169.3 80.7 11143.8 11575.8 14103 0.42 0.11 0.04 0.0016 0.0 0.0 0.0 0.0	3169.3 80.7 5858.5 15089.3 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 80.7 5843.8 15689.1 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 79.7 5774.7 16551.3 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 79.2 5752.0 17672.2 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 79.0 5542.4 18177.2 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 76.6 4491.0 22939.0 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 75.7 4445.2 25204.1 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 74.2 4370.1 25298.6 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 73.2 4321.7 23204.3 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 4879.6 18475.4 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 4902.8 18309.2 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 5044.9 17125.3 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 5798.1 16448.7 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 6856.2 15738.4 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 8181.3 14705.6 14103 0.42 0.11 0.04 0.0044 0.0 0.0 0.0 0.0	3169.3 70.7 9385.9 13316.5 14103 0.42 0.11 0.04 0.0016 0.0 0.0 0.0	3169.3 70.7 9593.9 12581.3 14103 0.42 0.11 0.04 0.0016 0.0 0.0 0.0 0.0	3169.3 70.7 10459.0 11088.5 14103 0.42 0.11 0.04 0.0016 0.0 0.0 0.0 0.0	3169.3 70.7 10654.6 11086.6 14103 0.42 0.11 0.04 0.0016 0.00 0.0 0.0 0.0
TOTAL SETTLEMENT AND STRAINS	Total Settlement (ft) Base Grade Elevation (ft, MSL) Intial Liner Segment Length, L_0 (ft) Post Settlement Liner Segment Length, L_f (ft) Post Settlement Liner Strain (- comp, + tension) Differential Settlement (%)	0.1 3289.9	1.7 3248.3 135.417 135.884 0.344% 1.15%	1.8 3248.2 16.875 16.876 0.004% 0.84%	2.0 3247.0 22.522 22.529 0.029% 0.61%	2.1 3246.4 30.003 30.007 0.010% 0.57%	2.6 3245.7 18.752 18.766 0.072% 2.56%	5.0 3240.9 152.518 152.573 0.037% 1.58%	5.2 3239.8 60.632 60.636 0.006% 0.38%	5.1 3238.4 99.387 99.385 -0.002% -0.11%	4.8 3237.7 64.007 64.003 -0.007% -0.53%	2.6 3237.4 165.394 165.375 -0.011% -1.31%	2.6 3237.4 5.625 5.625 0.008% -1.28%	2.1 3237.9 39.375 39.378 0.007% -1.20%	2.1 3243.9 23.286 23.283 -0.014% 0.06%	1.8 3251.5 29.065 29.139 0.253% -0.98%	1.5 3261.6 38.754 38.836 0.213% -0.83%	1.4 3272.5 42.629 42.663 0.078% -0.31%	1.5 3276.3 15.502 15.462 -0.258% 1.04%	0.6 3286.9 38.754 38.994 0.621% -2.36%	0.5 3289.5 9.688 9.712 0.239% -0.93%
LEACHATE COLLECTION PIPE GRADE	Initial Grade (%) Post Settlement Grade (%) Average Initial Grade (%) Average Post Settlement Grade (%)	-	-			1.52% 2.09%	1.52% 4.08%	1.52% 3.10%	1.52% 1.90%	1.52% 1.42%	1.52% 0.99%	1.52% 0.22% 1.52% 1.62%		-	-	-	-	-	-	-	-

SETTLEMENT OF CLAY LINER DUE TO PLACEMENT OF WASTE - SECTION DD'

DISTANCE	Point #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
DISTANCE	Coordinate along critical section (ft)	0	6	26	53	86	107	135	141	235	338	360	428	446	601	804	866	894	917	939	956	1063
	Cover Soil (Yrouge, pcf)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Sublayer 1: Bottom Ash (pcf)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128
	Sublaver 2: Coal Ash Paste (pcf)	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
UNIT WEIGHTS	Sublayer 3: Silt and Silty Clay (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Sublayer 4: Stiff Paste (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Groundwater (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	Final Cover Elevation (ft. MSL)	3290.0	3291.8	3298.2	3306.5	3317.1	3323.5	3332.4	3334.1	3363.6	3395.9	3403.0	3424.2	3430.0	3430.0	3368.3	3349.6	3341.1	3334.3	3327.5	3322.4	3290.0
	Base Grade Elevation (ft. MSL)	3290.0	3288.0	3281.9	3274.1	3264.1	3258.0	3256.3	3256.0	3254.6	3253.0	3252.7	3251.7	3251.4	3249.1	3246.0	3246.0	3256.0	3254.0	3256.0	3258.0	3290.0
	Bottom Ash to Coal Ash Paste Interface (ft. MSL)	3280.0	3277.9	3270.0	3260.0	3250.0	3245.8	3240.0	3238.4	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0
ELEVATIONS	Coal Ash Paste to Silt/Silty Clay Interface (ft. MSL)	3280.0	3277.9	3270.0	3260.0	3250.0	3245.8	3240.0	3238.4	3211.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0
	Silt/Silty Clay to Stiff Paste Interface (ft, MSL)	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0
	Stiff Paste to "Bedrock" Interface (ft, MSL)	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0
	Groundwater Table (ft, MSL)	3258.0	3258.0	3258.0	3258.0	3258.0	3258.0	3256.3	3256.0	3254.6	3253.0	3252.7	3251.7	3251.4	3249.1	3246.0	3246.0	3246.0	3246.0	3246.0	3246.0	3246.0
	Thickness of Final Cover (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Thickness of Additional Coal Ash Paste (ft)	0.0	0.3	12.8	28.9	49.5	62.0	72.5	74.6	105.5	139.4	146.8	169.0	175.1	177.4	118.8	100.1	81.6	76.8	68.0	60.9	0.0
	Thickness of Additional Bottom Ash (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAYER THICKNESS	Sublayer 1: Bottom Ash	10.0	10.1	11.9	14.1	14.1	12.2	16.3	17.6	43.6	42.0	41.7	40.7	40.4	38.1	35.0	35.0	45.0	43.0	45.0	47.0	79.0
	Sublayer 2: Coal Ash Paste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	Sublayer 3: Silt and Silty Clay	124.0	121.9	114.0	104.0	94.0	89.8	84.0	82.4	55.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Sublayer 4: Stiff Paste	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
	Elevation of midpoint of sublayer (ft msl)	3285.0	3282.9	3275.9	3267.1	3257.1	3251.9	3248.2	3247.2	3232.8	3232.0	3231.8	3231.3	3231.2	3230.0	3228.5	3228.5	3233.5	3232.5	3233.5	3234.5	3250.5
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	0.9	6.1	8.2	8.8	21.8	21.0	20.8	20.3	20.2	19.0	17.5	17.5	12.5	13.5	12.5	11.5	0.0
	Initial effective stress (psf)	640	649	761	903	844	401	536	579	1430	1379	1368	1334	1325	1249	1148	1148	2100	1910	2100	2290	5056
	Final effective stress (psf)	1072	1111	2632	4568	6815	7782	9092	9370	13679	17422	18240	20693	21368	21553	14889	12791	11670	10940	10144	9538	5488
	Preconsolidation pressure (if overconsolidated, psf)	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028
SUBLAVER 1- BOTTOM ASH	Initial Void Ratio	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547
SUBLATER I. BOTTOM ASH	Compression Index	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Recompression Index	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Secondary Compression Index	0.0008	0.0008	0.0008	0.0008	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.1	0.1	0.3	0.4	0.5	0.6	1.8	2.1	2.1	2.2	2.3	2.2	1.6	1.4	1.5	1.4	1.3	1.2	0.2
	Secondary compression (ft)	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4
	Total Settlement of sublayer (ft)	0.0	0.0	0.1	0.1	0.4	0.4	0.6	0.7	2.0	2.3	2.3	2.5	2.5	2.4	1.8	1.6	1.7	1.6	1.5	1.5	0.7

	Elevation of midpoint of sublayer (ft msl)	3280.0	3277.9	3270.0	3260.0	3250.0	3245.8	3240.0	3238.4	3211.0	3196.0	3196.0	3196.0	3196.0	3196.0
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	8.0	12.2	16.3	17.6	43.6	57.0	56.7	55.7	55.4	53.1
	Initial effective stress (psf)	1280.0	1298.3	1521.8	1806.2	1307.0	802.3	1071.5	1157.1	2859.0	3501.4	3479.2	3412.5	3394.1	3241.3
	Final effective stress (psf)	1712.0	1760.0	3392.9	5471.2	7278.3	8183.0	9627.4	9948.2	15108.1	19544.9	20351.5	22771.3	23437.5	23545.6
	Preconsolidation pressure (if overconsolidated, psf)	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683
SUDIAVER 2 COAL ASH BASTE	Initial Void Ratio	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14
SUBLATER 2. COAL ASH FASTE	Compression Index	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Recompression Index	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Secondary Compression Index	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	1.6	1.7	1.8	1.8
	Secondary compression (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
	Total Settlement of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	1.8	1.9	1.9	2.0
	Elevation of midpoint of sublayer (ft msl)	3218.0	3216.9	3213.0	3208.0	3203.0	3200.9	3198.0	3197.2	3183.5	3168.5	3168.5	3168.5	3168.5	3168.5
	Groundwater depth at midpoint of sublayer (ft)	40.0	41.1	45.0	50.0	55.0	57.1	58.3	58.8	71.1	84.5	84.2	83.2	82.9	80.6
SUBLAVER 3- SULT AND SULTV CLAV	Initial effective stress (psf)	7,154	6,961	6,409	5,706	4,719	4,061	4,121	4,147	4,856	5,153	5,131	5,064	5,046	4,893
SUBLATER 5. SILT AND SILTT CEAT	Final effective stress (psf)	7,586	7,423	8,280	9,371	10,690	11,442	12,677	12,938	17,105	21,196	22,003	24,423	25,089	25,197
	Constrained modulus of layer (psf)	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000	445,000
	Estimated settlement by elastic method (ft)	0.1	0.1	0.5	0.9	1.3	1.5	1.6	1.6	1.5	0.9	0.9	1.1	1.1	1.1
	Elevation of midpoint of sublayer (ft msl)	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0
	Groundwater depth at midpoint of sublayer (ft)	127.0	127.0	127.0	127.0	127.0	127.0	125.3	125.0	123.6	122.0	121.7	120.7	120.4	118.1
	Initial effective stress (psf)	13470.2	13199.2	12362.0	11296.4	9946.4	9134.6	8984.9	8951.5	8667.4	7875.4	7853.2	7786.5	7768.1	7615.3
	Final effective stress (psf)	13902.2	13660.9	14233.1	14961.4	15917.7	16515.3	17540.8	17742.6	20916.6	23918.9	24725.5	27145.3	27811.5	27919.6
	Preconsolidation pressure (if overconsolidated, psf)	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103	14103
SLIDI AVED 4. STIEF COAL ASH DASTE	Initial Void Ratio	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
SUBLATER 4. STIFF COAL ASITTASTE	Compression Index	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	Recompression Index	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	Secondary Compression Index	0.0016	0.0016	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0044
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.1	0.2	0.4	0.5	0.6	0.7	1.0	1.2	1.3	1.5	1.5	1.5
	Secondary compression (ft)	0.1	0.1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	Total Settlement of sublayer (ft)	0.1	0.1	0.4	0.5	0.7	0.8	0.9	0.9	1.2	1.5	1.6	1.7	1.8	1.8
	Total Settlement (ft)	0.3	0.3	0.9	1.5	2.3	2.7	3.2	3.3	4.8	6.4	6.6	7.2	7.3	7.3
	Base Grade Elevation (ft, MSL)	3289.7	3287.7	3280.9	3272.6	3261.8	3255.3	3253.2	3252.7	3249.8	3246.6	3246.1	3244.5	3244.1	3241.8
TOTAL SETTIES TATE AND STRAINS	Intial Liner Segment Length, L _o (ft)		5.970	21.511	27.378	35.200	21.511	28.174	5.635	93.886	103.012	22.503	67.508	18.585	154.601
TOTAL SETTLEMENT AND STRAINS	Post Settlement Liner Segment Length, Lf(ft)		5.973	21.707	27.544	35,439	21.628	28.204	5.641	93.921	103.050	22.506	67.518	18,588	154.600
	Post Settlement Liner Strain (- comp. + tension)		0.054%	0.912%	0.605%	0.678%	0.543%	0.104%	0.112%	0.038%	0.038%	0.017%	0.015%	0.014%	0.000%
	Differential Settlement (%)		0.16%	3.06%	2.06%	2.30%	1.86%	1.56%	1.66%	1.62%	1.62%	0.87%	0.81%	0.76%	-0.03%
	Initial Grade (%)	-	-	-	-	-	-	-	-	1.51%	1.51%	1.51%	1.51%	1.51%	1.51%
LEACHATE COLLECTION PIPE GRADE	Post Settlement Grade (%)	-	-		-	-	-	-	-	3.13%	3.13%	2.37%	2.31%	2.26%	1.48%
	Average Initial Grade (%) Average Post Settlement Grade (%)														

3196.0	3196.0	3196.0	3196.0	3196.0	3196.0	3196.0
50.0	50.0	50.0	50.0	50.0	50.0	50.0
3040.0	3040.0	4320.0	4064.0	4320.0	4576.0	8672.0
16781.1	14683.2	13889.6	13094.7	12363.8	11823.7	9104.0
1683	1683	1683	1683	1683	1683	1683
1.14	1.14	1.14	1.14	1.14	1.14	1.14
0.15	0.15	0.15	0.15	0.15	0.15	0.15
0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.0060	0.0060	0.0060	0.0060	0.0060	0.0060	0.0060
1.6	1.4	1.1	1.1	1.0	0.9	0.0
0.1	0.1	0.1	0.1	0.1	0.1	0.1
1.7	1.6	1.2	1.2	1.1	1.0	0.2
3168.5	3168.5	3168.5	3168.5	3168.5	3168.5	3168.5
77.5	77.5	77.5	77.5	77.5	77.5	77.5
4,692	4,692	5,972	5,716	5,972	6,228	10,324
18,433	16,335	15,541	14,746	14,015	13,475	10,756
445,000	445,000	445,000	445,000	445,000	445,000	445,000
0.8	0.7	0.5	0.5	0.5	0.4	0.0
3131.0	3131.0	3131.0	3131.0	3131.0	3131.0	3131.0
115.0	115.0	115.0	115.0	115.0	115.0	115.0
7414.0	7414.0	8694.0	8438.0	8694.0	8950.0	13046.0
21155.1	19057.2	18263.6	17468.7	16737.8	16197.7	13478.0
14103	14103	14103	14103	14103	14103	14103
0.42	0.42	0.42	0.42	0.42	0.42	0.42
0.11	0.11	0.11	0.11	0.11	0.11	0.11
0.04	0.04	0.04	0.04	0.04	0.04	0.04
0.0044	0.0044	0.0044	0.0044	0.0044	0.0044	0.0016
1.1	0.9	0.7	0.7	0.6	0.5	0.0
0.3	0.3	0.3	0.3	0.3	0.3	0.1
1.4	1.2	1.0	1.0	0.9	0.8	0.1
5.6	5.0	4.5	4.3	4.0	3.7	1.0
3240.4	3241.0	3251.5	3249.7	3252.0	3254.3	3289.0
203.731	61.875	29.850	22.589	22.589	16.993	111.563
203.713	61.878	30.020	22.569	22.619	17.026	112.367
-0.009%	0.005%	0.570%	-0.086%	0.135%	0.194%	0.721%
-0.83%	-0.96%	-1.66%	-1.03%	-1.41%	-1.55%	-2.42%
1.51%	-	-	-	-	-	-
0.68%	-	-	-	-	-	-
1.51%						

1.86%
SETTLEMENT OF CLAY LINER DUE TO PLACEMENT OF WASTE - SECTION EE'

DISTANCE	Point # Coordinate along critical section (ft)	1 0	2 6	3 40	4 45	5 119	6 139	7 219	8 236	9 240	10 278	11 315	12 334	13 360	14 394	15 424	16 660	17 729	18 755	19 894	20 917	21 939	22 951	23 1052	24 1063
	Cover Soil (y _{cover} , pcf)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Sublaver 1: Bottom Ash (pcf)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128
	Sublayer 2: Coal Ash Paste (pcf)	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
UNIT WEIGHTS	Sublayer 3: Silt and Silty Clay (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Sublaver 4: Stiff Paste (pcf)	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
	Groundwater (pcf)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
	Final Cover Elevation (ft, MSL)	3290.0	3291.4	3300.0	3300.7	3310.0	3313.8	3329.7	3333.0	3333.8	3341.2	3348.5	3352.2	3357.4	3364.0	3370.0	3416.5	3430.0	3430.0	3366.7	3356.5	3346.3	3341.2	3295.1	3290.0
	Base Grade Elevation (ft, MSL)	3290.0	3290.0	3281.3	3280.0	3271.5	3269.2	3260.0	3259.0	3258.9	3258.4	3257.8	3257.5	3257.1	3256.6	3256.2	3252.6	3251.5	3251.1	3249.0	3249.0	3255.0	3260.0	3290.0	3290.0
	Bottom Ash to Coal Ash Paste Interface (ft, MSL)	3289.5	3287.9	3278.2	3276.7	3255.6	3250.0	3250.0	3250.0	3250.0	3257.0	3257.0	3256.0	3256.0	3250.0	3240.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0	3211.0
ELEVATIONS	Coal Ash Paste to Silt/Silty Clay Interface (ft, MSL)	3289.5	3287.9	3278.2	3276.7	3255.6	3250.0	3250.0	3250.0	3250.0	3257.0	3257.0	3256.0	3256.0	3250.0	3240.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0	3181.0
	Silt/Silty Clay to Stiff Paste Interface (ft, MSL)	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0	3156.0
	Stiff Paste to "Bedrock" Interface (ft. MSL)	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0	3106.0
	Groundwater Table (ft, MSL)	3260.0	3260.0	3260.0	3260.0	3260.0	3260.0	3260.0	3259.0	3258.9	3258.4	3257.8	3257.5	3257.1	3256.6	3256.2	3252.6	3251.5	3251.1	3249.0	3249.0	3249.0	3249.0	3249.0	3249.0
	Thickness of Final Cover (ft)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Thickness of Additional Coal Ash Paste (ft)	0.0	1.4	15.2	17.2	35.0	41.1	66.2	70.5	71.3	79.3	87.2	91.2	96.8	103.9	110.3	160.4	175.0	175.4	114.2	104.0	87.8	77.7	1.6	0.0
	Thickness of Additional Bottom Ash (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LAYER THICKNESS	Sublayer 1: Bottom Ash	0.5	2.1	3.1	3.3	15.9	19.2	10.0	9.0	8.9	1.4	0.8	1.5	1.1	6.6	16.2	41.6	40.5	40.1	38.0	38.0	44.0	49.0	79.0	79.0
	Sublaver 2: Coal Ash Paste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	Sublayer 3: Silt and Silty Clay	133.5	131.9	122.2	120.7	99.6	94.0	94.0	94.0	94.0	101.0	101.0	100.0	100.0	94.0	84.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Sublayer 4: Stiff Paste	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
	Elevation of midpoint of sublayer (ft msl)	3289.8	3288.9	3279.8	3278.3	3263.5	3259.6	3255.0	3254.5	3254.5	3257.7	3257.4	3256.8	3256.6	3253.3	3248.1	3231.8	3231.3	3231.1	3230.0	3230.0	3233.0	3235.5	3250.5	3250.5
	Groundwater depth at midpoint of sublayer (ft)	0.0	0.0	0.0	0.0	0.0	0.4	5.0	4.5	4.5	0.7	0.4	0.8	0.6	3.3	8.1	20.8	20.3	20.1	19.0	19.0	16.0	13.5	0.0	0.0
	Initial effective stress (psf)	32	134	202	212	1020	1208	328	295	293	45	26	50	37	217	530	1363	1329	1316	1246	1246	1818	2294	5056	5056
	Final effective stress (psf)	464	725	2332	2566	5373	6243	8176	8627	8714	9357	10229	10698	11308	12290	13315	19760	21359	21391	14473	13327	12080	11423	5669	5488
	Preconsolidation pressure (if overconsolidated, psf)	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028	5028
CURLANTE & DOTTON (ACU	Initial Void Ratio	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547	0.547
SUBLAYER I: BOTTOM ASH	Compression Index	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Recompression Index	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	Secondary Compression Index	0.0008	0.0008	0.0008	0.0008	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048
	Ultimate settlement due to primary consolidation (ft)	0.0	0.0	0.0	0.0	0.2	0.3	0.3	0.3	0.3	0.1	0.0	0.1	0.1	0.3	0.7	2.2	2.3	2.3	1.7	1.5	1.6	1.6	0.3	0.2
	Secondary compression (ft)	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.4
	Total Settlement of sublayer (ft)	0.0	0.0	0.0	0.0	0.3	0.4	0.4	0.4	0.4	0.1	0.0	0.1	0.1	0.4	0.8	2.5	2.5	2.5	1.9	1.8	1.8	1.8	0.7	0.7

SUBLAYER 2: COAL ASH PASTE	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Preconsolidation pressure (if overconsolidated, psf) Initial Void Ratio Compression Index Recompression Index Secondary Compression Index Ultimate settlement due to primary consolidation (ft) Secondary compression (ft) Total Settlement of sublayer (ft)	3289.5 0.0 496.0 1683 1.14 0.15 0.01 0.0004 0.0 0.0 0.0	3287.9 0.0 269.0 859.5 1683 1.14 0.15 0.01 0.0004 0.0 0.0 0.0	3278.2 0.0 403.1 2533.8 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3276.7 0.0 423.8 2777.7 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3255.6 4.4 1761.8 6115.6 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3250.0 10.0 1839.7 6873.9 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3250.0 10.0 656.0 8503.8 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3250.0 9.0 590.4 8922.4 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0	3250.0 8.9 586.7 9007.7 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3257.0 1.4 90.1 9401.8 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3257.0 0.8 52.7 10255.2 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0	3256.0 1.5 99.6 10747.5 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0	3256.0 1.1 73.4 11344.8 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3250.0 6.6 433.4 12506.4 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0 0.0	3240.0 16.2 1059.5 13845.1 1683 1.14 0.15 0.01 0.0060 0.0 0.0 0.0	3196.0 56.6 3470.4 21867.6 1683 1.14 0.15 0.01 0.0060 1.7 0.1 1.8	3196.0 55.5 3401.9 23432.0 1683 1.14 0.15 0.01 0.0060 1.8 0.1 1.9	3196.0 55.1 3375.5 23450.7 1683 1.14 0.15 0.01 0.0060 1.8 0.1 1.9	3196.0 53.0 3236.8 16463.2 1683 1.14 0.15 0.01 0.0060 1.5 0.1 1.6	3196.0 53.0 3236.8 15317.3 1683 1.14 0.15 0.01 0.0060 1.4 0.1 1.6	3196.0 53.0 4004.8 14267.4 1683 1.14 0.15 0.01 0.0060 1.2 0.1 1.3	3196.0 53.0 4644.8 13774.4 1683 1.14 0.15 0.01 0.0060 1.0 0.1 1.1	3196.0 53.0 8484.8 9097.8 1.14 0.15 0.01 0.0060 0.1 0.1 0.2	3196.0 53.0 8484.8 8916.8 1683 1.14 0.15 0.01 0.0060 0.0 0.1 0.2
SUBLAYER 3: SILT AND SILTY CLAY	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Constrained modulus of layer (psf) Estimated settlement by elastic method (ft)	3222.8 37.3 6,751 7,183 445,000 0.1	3221.9 38.1 6,798 7,388 445,000 0.2	3217.1 42.9 5,973 8,104 445,000 0.6	3216.3 43.7 5,846 8,200 445,000 0.6	3205.8 54.2 5,375 9,729 445,000 1.0	3203.0 57.0 5,252 10,286 445,000 1.1	3203.0 57.0 4,068 11,916 445,000 1.7	3203.0 56.0 4,003 12,335 445,000 1.8	3203.0 55.9 3,999 12,420 445,000 1.8	3206.5 51.9 3,756 13,068 445,000 2.1	3206.5 51.3 3,719 13,921 445,000 2.3	3206.0 51.5 3,730 14,377 445,000 2.4	3206.0 51.1 3,703 14,975 445,000 2.5	3203.0 53.6 3,846 15,919 445,000 2.6	3198.0 58.2 4,109 16,894 445,000 2.4	3168.5 84.1 5,122 23,519 445,000 1.0	3168.5 83.0 5,053 25,084 445,000 1.1	3168.5 82.6 5,027 25,102 445,000 1.1	3168.5 80.5 4,888 18,115 445,000 0.7	3168.5 80.5 4,888 16,969 445,000 0.7	3168.5 80.5 5,656 15,919 445,000 0.6	3168.5 80.5 6,296 15,426 445,000 0.5	3168.5 80.5 10,136 10,749 445,000 0.0	3168.5 80.5 10,136 10,568 445,000 0.0
SUBLAYER 4: STIFF COAL ASH PASTE	Elevation of midpoint of sublayer (ft msl) Groundwater depth at midpoint of sublayer (ft) Initial effective stress (psf) Final effective stress (psf) Preconsolidation pressure (if overconsolidated, psf) Initial Void Ratio Compression Index Recompression Index Secondary Compression Index Ultimate settlement due to primary consolidation (ft) Secondary compression (ft) Total Settlement of sublayer (ft)	3131.0 129.0 13411.9 13843.9 14103 0.42 0.11 0.04 0.0016 0.0 0.1	3131.0 129.0 13400.7 13991.2 14103 0.42 0.11 0.04 0.0016 0.0 0.1	3131.0 129.0 12223.4 14354.0 14103 0.42 0.11 0.04 0.0044 0.1 0.3 0.4	3131.0 129.0 12042.2 14396.2 14103 0.42 0.11 0.04 0.0044 0.1 0.3 0.4	3131.0 129.0 10804.2 15158.0 14103 0.42 0.11 0.04 0.0044 0.3 0.3 0.6	3131.0 129.0 10479.1 15513.3 14103 0.42 0.11 0.04 0.0044 0.3 0.3 0.6	3131.0 129.0 9295.4 17143.2 14103 0.42 0.11 0.04 0.0044 0.6 0.3 0.9	3131.0 128.0 9229.8 17561.8 14103 0.42 0.11 0.04 0.0044 0.6 0.3 0.9	3131.0 127.9 9226.1 17647.1 14103 0.42 0.11 0.04 0.0044 0.6 0.3 0.9	3131.0 127.4 9237.7 18549.4 14103 0.42 0.11 0.04 0.0044 0.7 0.3 10	3131.0 126.8 9200.3 19402.8 14103 0.42 0.11 0.04 0.0044 0.8 0.3	3131.0 126.5 9174.6 19822.5 14103 0.42 0.11 0.04 0.0044 0.8 0.3 11	3131.0 126.1 9148.4 20419.8 14103 0.42 0.11 0.04 0.0044 0.9 0.3 1.2	3131.0 125.6 9072.8 21145.8 14103 0.42 0.11 0.04 0.0044 1.0 0.3 1.2	3131.0 125.2 8972.9 21758.5 14103 0.42 0.11 0.04 0.0044 1.0 0.3 1.3	3131.0 121.6 7844.4 26241.6 14103 0.42 0.11 0.04 0.0044 1.4 0.3 1.7	3131.0 120.5 7775.9 27806.0 14103 0.42 0.11 0.04 0.0044 1.5 0.3 1.8	3131.0 120.1 7749.5 27824.7 14103 0.42 0.11 0.04 0.0044 1.5 0.3 1.8	3131.0 118.0 7610.8 20837.2 14103 0.42 0.11 0.04 0.0044 1.0 0.3 1.3	3131.0 118.0 7610.8 19691.3 14103 0.42 0.11 0.04 0.0044 0.9 0.3 1.2	3131.0 118.0 8378.8 18641.4 14103 0.42 0.11 0.04 0.0044 0.8 0.3 11	3131.0 118.0 9018.8 18148.4 14103 0.42 0.11 0.04 0.0044 0.7 0.3 1.0	3131.0 118.0 12858.8 13471.8 14103 0.42 0.11 0.04 0.0016 0.0 0.1	3131.0 118.0 12858.8 13290.8 14103 0.42 0.11 0.04 0.0016 0.0 0.1
TOTAL SETTLEMENT AND STRAINS		0.3 3289.7	0.3 3289.7 5.625 5.625 0.007% 1.18%	1.0 3280.3 35.208 35.388 0.509% 1.99%	1.1 3278.9 5.417 5.435 0.329% 1.31%	1.8 3269.7 74.737 74.821 0.112% 0.94%	2.1 3267.2 19.628 19.662 0.174% 1.43%	2.9 3257.1 81.154 81.250 0.118% 1.00%	3.0 3256.0 16.905 16.913 0.049% 0.78%	3.1 3255.9 3.750 3.751 0.014% 0.76%	3.2 3255.2 37.504 37.507 0.006% 0.35%	3.4 3254.4 37.504 37.509 0.013% 0.68%	3.6 3253.9 18.752 18.755 0.016% 0.82%	3.8 3253.4 26.253 26.256 0.012% 0.66%	4.1 3252.5 33.754 33.761 0.022% 1.08%	4.5 3251.6 30.003 30.012 0.028% 1.30%	7.0 3245.6 236.277 236.328 0.021% 1.05%	7.3 3244.2 68.758 68.764 0.008% 0.47%	7.3 3243.8 26.503 26.503 0.000% -0.03%	5.6 3243.4 139.141 139.125 -0.011% -1.27%	5.2 3243.8 22.500 22.502 0.011% -1.47%	4.7 3250.3 23.286 23.413 0.544% -2.04%	4.5 3255.5 12.311 12.425 0.925% -2.23%	1.1 3288.9 105.601 106.603 0.949% -3.18%	1.0 3289.0 11.250 11.251 0.006% -1.09%
LEACHATE COLLECTION PIPE GRADE	Initial Grade (%) Post Settlement Grade (%) Average Initial Grade (%) Average Post Settlement Grade (%)	-	-	-	-	-	-	-	-	1.52% 2.28%	1.52% 1.87%	1.52% 2.20%	1.52% 2.34%	1.52% 2.18%	1.52% 2.60%	1.52% 2.82%	1.52% 2.57%	1.52% 1.99%	1.52% 1.49%	1.52% 0.25% 1.52% 1.90%	-	-	-	-	

APPENDIX A.3

Veneer Slope Stability Analysis

ME1343/Liner Veneer Stability.doc

COMPUTATION COVER SHEET

Client:	Talen Montana, LLC Pro	ject:	EHP J Cell	Project #: ME1210	Task #: 4
TITLE (OF COMPUTATIONS		LINER VEN	NEER STABILITY	
COMPU	TATIONS BY:	Signature	Dichary L	~	07/06/2015 DATE
		Printed Name and Title	Zichang Li Staff Engineer		
ASSUMI CHECKI (Peer Rev	PTIONS AND PROCEDURE ED BY: viewer)	Signature Printed Name and Title	Chunling Li Project Engineer	~	07/08/2016 DATE
COMPU	TATIONS CHECKED BY:	Signature	Chunling Li	~	07/08/2016 DATE
COMPU' BACKCI	TATIONS HECKED BY: (Originator)	and Title Signature Printed Name and Title	Project Engineer Ziclong Li Staff Engineer	<u></u>	07/08/2016 DATE
APPROV (PM or D	ZED BY: esignate)	Signature Printed Name	David Espinoza		07/08/2016 DATE
APPROV	AL NOTES:	and Title	Senior Principal		
REVISIC	NS (Number and initial all re	visions)			
NO.	SHEET DAT	ΓE	BY C	HECKED BY	APPROVAL

Geosyntec [▷]		Written by:	Zichang Li		Date:	07/06/2016		
	consultants		Reviewed by:	David Espinoza		Date:	07/08/2016	
Client:	Talen	Project:	EHP J Cell	Pro	ject No.:	ME1210	Task No.:	4

LINER VENEER STABILITY ON SIDESLOPES

PURPOSE

The purpose of this calculation package is to present the veneer slope stability analysis of the liner system for the proposed Colstrip Steam Electric Station, J Cell located in Colstrip, Montana. As shown in the base grading plan in Figure 1, liner system will be constructed on a 3 horizontal to 1 vertical (3H:1V) with maximum slope height of 60 ft.

According to a technical manual published by the USEPA entitled "Solid Waste Disposal Facility Criteria" [USEPA, 1993], when there is no imminent danger to human life or threat of major environmental impact, the minimum recommended slope stability factor of safety is 1.25. Because a veneer stability failure of the liner system does not pose a threat to human life or the environment and a failure could be easily repaired, the stability of the liner system will be considered acceptable if the factor of safety is greater than or equal to 1.25.

PROCEDURE

An analysis of veneer stability considers noncircular wedge-type potential slip surfaces that extend parallel to the liner system components. The selected method of analysis is based on limit equilibrium and takes into account soil buttressing effect, geosynthetic tensile forces, and seepage forces within drainage layers. The finite slope factor of safety equation, as formulated by Giroud et al. [1995], is:

$$FS = \lambda \frac{\tan \delta}{\tan \beta} + \frac{a / \sin \beta}{\gamma_t (t - t_w) + \gamma_{sat} t_w} + \frac{\gamma_t (t - t_w^*) + \gamma_b t_w^*}{\gamma_t (t - t_w) + \gamma_{sat} t_w} \frac{t}{h} \frac{\sin \phi}{\sin 2\beta \cos(\beta + \phi)} + \frac{ct / h}{\gamma_t (t - t_w) + \gamma_{sat} t_w} \frac{\cos \phi}{\sin \beta \cos(\beta + \phi)} + \frac{T / h}{\gamma_t (t - t_w) + \gamma_{sat} t_w}$$
(1)

$$FS = FS1 + FS2 + FS3 + FS4 + FS5$$

where:

$$\lambda = \begin{cases} \frac{\gamma_t(t - t_w) + \gamma_b t_w}{\gamma_t(t - t_w) + \gamma_{sat} t_w} & \text{for failure surface above the geomembrane (dimensionless)} \\ 1 & \text{for failure surface below the geomembrane (dimensionless)} \end{cases}$$

Geosyntec [▷]		Written by:	Zichang Li	Date:	07/06/2016		
	consultants		Reviewed by:	David Espinoza	Date:	07/08/2016	
Client:	Talen	Project:	EHP J Cell	Project No.:	ME1210	Task No.: 4	

- FS = Factor of Safety (dimensionless)
- FS1 = Infinite slope friction term
- FS2 = Infinite slope adhesion term
- FS3 = Buttress resistance friction term
- FS4 = Buttress resistance cohesion term
- FS5 = Geosynthetic tension term
- $\gamma =$ total unit weight of soil (pcf)
- γ_{sat} = saturated unit weight of soil (pcf)
- γ_b = buoyant unit weight of soil (pcf)
- t = thickness of soil layer (ft)
- t_w = thickness of water flow along slope (ft)
- t_{W}^{*} = thickness of water flow in toe of slope (ft)
- β = slope angle (degrees)
- δ = interface friction angle along slip surface (degrees)
- a = interface adhesion (psf)
- ϕ = internal friction angle of soil above critical surface (degrees)
- h =height of slope (ft)
- T = tension in geosynthetics (lb/ft)
- c = cohesion of soil above critical surface (psf)

SOIL AND GEOSYNTHETIC PROPERTIES

Along the sideslopes, the liner system consists of the following components, from top to bottom:

- 18-in bottom ash drainage layer;
- Geotextile protection layer;
- 60-mil high density polyethylene (HDPE) geomembrane;
- Geosynthetic clay liner (GCL); and
- CCR paste subgrade.

The interfaces in the liner system, from top to bottom, are:

- Interface #1: bottom ash / non-woven geotextile;
- Interface #2: non-woven geotextile / textured HDPE geomembrane;
- Interface #3: textured HDPE geomembrane / GCL;
- Interface #4: non-woven geotextile (GCL facing) / paste.

Peak interface friction shear strengths for the liner system interfaces are determined from the laboratory testing as presented in Attachment 1. The table below summarizes the shear strength properties considered for this analysis.

Geosyntec ^o		Written by:	Zichang	Li	Date:	07/06/2016		
	consultants		Reviewed by:	David Espi	noza	Date:	07/08/2016	
Client:	Talen	Project:	EHP J Cell		Project No.:	ME1210	Task No.:	4

Material/ Interface	Total Unit Weight, γ _t	Saturated Unit Weight, Ys	Friction Angle	Cohesion/ Adhesion	Source
Pottom ash	(pci)	<u>(pci)</u>	(deg)	(\mathbf{psi})	Galdar [2001]
Bottom asn	94	112	40.0	0.7	Golder [2001]
Bottom ash / geotextile interface	-	-	38.3 ⁽²⁾	0	Laboratory results (Attachment 1)
Geotextile / textured HDPE geomembrane interface	-	-	0.0	128 ⁽³⁾	Laboratory results (Attachment 1)
Geomembrane / GCL interface	-	-	25.8 ⁽⁴⁾	0	Laboratory results (Attachment 1)
GCL/ paste interface	-	-	31.9 ⁽⁴⁾	0	Laboratory results (Attachment 1)
Aged fly ash paste	102	102	35.0	0	WAI [2011]

Notes: (1) Cohesion of bottom ash was concretively assumed to be 0 in this analysis.

(2) Friction angle was determined from secant friction angle under normal stress of 150 psf.

(3) Adhesion was determined from the lower value of shear strength at normal stress of 150 and 300 psf.

(4) Friction angle was determined from secant friction angle under normal stress of 300 psf.

WATER DEPTH ABOVE GEOMEMBRANE

An analysis was conducted to determine the water depth above the HDPE geomembrane using the HELP model [USEPA, 1993]. The results of this analysis are included as Attachment 1. The protective/drainage layer is assumed to have a texture number of 31 (coal-burning electric plant bottom ash). The geotextile protection layer was ignored for the purposes of this analysis. The geomembrane was assumed to have poor placement quality as well as one pinhole and one installation defect per acre. The calculated average water depth (peak daily value) above the geomembrane is 7.1 in, and the maximum water depth is 13.4 in, which occurs at the toe of the slope.

SUMMARY OF INPUT PARAMETERS

The input parameters for Equation 1 are provided below. For this analysis, the resisting force due to tension in geosynthetics (T) is neglected (i.e., the effect of the anchor trench is conservatively neglected and the protective layer is mainly supported by frictional forces). Failure is assumed to occur between the interfaces discussed above.

Ge	OSY cons	ntec ^D	Written by: Reviewed by:	Zichang David Espi	Li	Date:	07/06/2016	
Client:	Ta	len Project:	ЕНР Ј С	ell	Project No.:	ME1210	Task No.:	4
	¥ =	= 94 pcf						
	Ysat =	= 112 pcf						
	$t_w =$	= 7.104 in						
	$t^{*}_{w} =$	= 13.408 in						
	<i>t</i> =	= 18.0 in						
	β =	= 18.4°						
	a =	= 0 psf (con	servatively assun	ned)				
	φ =	= 40° (botto	m ash drainage la	iver)				
	<i>c</i> =	= 0 psf(bot)	tom ash drainage	layer)				
	h =	= 60 ft	0	- /				
	<i>T</i> =	= 0.1b/ft						

- $\lambda = 0.756$ (failure above the geomembrane)
- λ = 1 (failure below the geomembrane)

RESULTS

The calculation was conducted using Excel Spreadsheet. The output for the calculated cases is shown in Tables 1 through 4. The calculation shows that the critical interface is between the HDPE geomembrane and the GCL; therefore, the factor of safety for veneer stability is 1.48, which is greater than the minimum recommended value (i.e., FS = 1.25). The results of calculation are summarized below:

Interface (Above or Below the geomembrane)	Calculated FS
Bottom ash / geotextile interface (Above)	1.82
Geotextile / textured HDPE geomembrane interface (Above)	2.70
Geomembrane / GCL interface (Below)	1.48
GCL/ paste interface (Below)	1.90

REFERENCES

Eid, H.T. and Stark, T.D. (1997). "Shear Behavior of an Unreinforced Geosynthetic Clay Liner," *Geosynthetics International*, Vol. 4, No. 6, pp. 645-659.

Giroud, J.P., Bachus, R.C., and Bonaparte, R. (1995). "Influence of Water Flow on the Stability of Geosynthetic-Soil Layered Systems on Slopes," *Geosynthetics International*, Vol. 2, No. 6, pp. 1149-1180.

Geosyntec [⊳]		Written by:	Zichang	Li	Date:	07/06/2016		
	consultant	ts	Reviewed by:	David Espi	noza	Date:	07/08/2016	
Client:	Talen	Project:	EHP J	Cell	Project No.:	ME1210	Task No.:	4

Golder Associates, Inc. (2001), Geotechnical Characterization, Mass Balance, Water Balance, and Conceptual Deposition Plan for Paste Fly Ash Units 3 & 4 Effluent Holding Pond Colstrip Steam Electric Station Colstrip, Montana, June 2001.

Koerner, R.M., Martin, J.P., and Koerner, G.R. (1986). "Shear Strength Parameters Between Geomembranes and Cohesive Soils," *Geotextiles and Geomembranes*, Vol. 4, No. 1, pp. 21-30.

Stark, T.D., Arellano, D., Evans, W.D., Wilson, V.L., and Gonda, J.M. (1998). "Unreinforced Geosynthetic Clay Liner Case History," *Geosynthetics International*, Vol. 5, No. 5, pp. 521-544.

USEPA (1993). "Solid Waste Disposal Facility Criteria," Document No. EPA 530-R-93-017, United States Environmental Protection Agency, November.

Womack & Associates, Inc. (2011), Geotechnical Investigation Report, CP 102 EHP Dam Raise Project, PPL Montana –Colstrip Power Plant UNITS 3 & 4 EHP Main Dam, Stage 2 Dam Raise – Inboard Embankment Fill, Private Report for PPL Montana, LLC, January 2011.

FIGURE

TABLES

Unit Weights (pcf)							
γ _w =	62.4						
γ _t =	94.0						
γ _s =	112.0						
γ _b =	49.6						

Table 1 - Veneer Failure Between the	Bottom Ash and Geotextile
Colstrip Steam Electric Station, J	Cell, Colstrip, Montana

Cover	r Data	ft	Slope and	St
<i>t</i> _w (in.) =	7.104	0.592	β (deg) =	
<i>t</i> _w * (in.) =	13.408	1.117333	β (rad) =	
t (in.) =	18.0		δ (deg) =	
$t_w/t =$	0.395		δ (rad) =	
$t_{w} */t =$	0.745		φ (deg) =	
h (ft) =	60.0		φ (rad) =	
h (in.) =	720.0		a (psf) =	
Lambda (c	0.756		c (psf) =	

	Slope and	Strengths
92	β (deg) =	18.4
33	β (rad) =	0.322
	δ (deg) =	38.3
	δ (rad) =	0.668
	φ (deg) =	40.0
	φ (rad) =	0.698
	a (psf) =	0.0
	<i>c</i> (psf) =	0.0

Factor of Safety	
FS1 =	1.79
FS2 =	0.00
FS3 =	0.03
FS4 =	0.00
FS5 = 0.00	
FS = 1.82	

Unit Weights (pcf)		
γ _w =	62.4	
γ _t =	94.0	
γ _s =	112.0	
γ _b =	49.6	

Table 2 - Veneer Failure Between the Geotextile and Geomembrane
Colstrip Steam Electric Station, J Cell, Colstrip, Montana

Cove	r Data	ft	Slope and
<i>t</i> _w (in.) =	7.104	0.592	β (deg) =
<i>t</i> _w * (in.) =	13.408	1.117333	β (rad) =
t (in.) =	18.0		δ (deg) =
$t_w/t =$	0.395		δ (rad) =
$t_{w} */t =$	0.745		φ (deg) =
h (ft) =	60.0		φ (rad) =
h (in.) =	720.0		a (psf) =
Lambda (c	0.756		c (psf) =

	Slope and	Strengths
92	β (deg) =	18.4
33	β (rad) =	0.322
	δ (deg) =	0.0
	δ (rad) =	0.000
	φ (deg) =	40.0
	φ (rad) =	0.698
	a (psf) =	128.0
	c (psf) =	0.0

Factor of Safety	
FS1 =	0.00
FS2 =	2.67
FS3 =	0.03
FS4 =	0.00
FS5 = 0.00	
FS = 2.70	

 Table 3 - Veneer Failure Between the Geomembrane and GCL

 Colstrip Steam Electric Station, J Cell, Colstrip, Montana

Unit Weights (pcf)	
γ _w = 62.4	
γ _t =	94.0
γ _s =	112.0
γ _b = 49.6	

Cove	r Data	ft
<i>t</i> _w (in.) =	7.104	
<i>t</i> _w * (in.) =	13.408	1
t (in.) =	18.0	
$t_w/t =$	0.395	
$t_{w} */t =$	0.745	
h (ft) =	60.0	
h (in.) =	720.0	

ft	Slope and	Strengths
0.592	β (deg) =	18.4
1.117333	β (rad) =	0.322
	δ (deg) =	25.8
	δ (rad) =	0.450
	φ (deg) =	40.0
	φ (rad) =	0.698
	a (psf) =	0.0
	c (psf) =	0.0

Factor of Safety	
FS1 =	1.45
FS2 =	0.00
FS3 = 0.03	
FS4 = 0.00	
FS5 = 0.00	
FS = 1.48	

100

 Table 4 - Veneer Failure Between the Geomembrane and Paste

 Colstrip Steam Electric Station, J Cell, Colstrip, Montana

Unit Weights (pcf)						
γ _w =	_{/w} = 62.4					
γ _t =	94.0					
γ _s =	112.0					
γ _b =	49.6					

Cover Data			
<i>t</i> _w (in.) =	7.104		
<i>t</i> _w * (in.) =	13.408	1	
t (in.) =	18.0		
$t_w/t =$	0.395		
$t_{w} */t =$	0.745		
h (ft) =	60.0		
h (in.) =	720.0		

ft	Slope and	Strengths
0.592	β (deg) =	18.4
1.117333	β (rad) =	0.322
	δ (deg) =	31.9
	δ (rad) =	0.557
	φ (deg) =	40.0
	φ (rad) =	0.698
	a (psf) =	0.0
	c (psf) =	0.0

Factor of Safety				
FS1 =	1.87			
FS2 =	0.00			
FS3 =	FS3 = 0.03			
FS4 =	0.00			
FS5 = 0.00				
FS =	1.90			

172

ATTACHMENT 1

Laboratory Results of Interface Friction Tests

Interface Friction Test Report

Client:Geosyntec ConsultantsProject:Colstrip Steam Electric StationDate:04-22-2016 to 04-22-2016

TRI Log#: 20132 Test Method: ASTM D5321

John M. Allen, P.E., 04/22/2016

Quality Review/Date

Tested Interface: Bottom Ash (A-Cell) vs. Skaps GE180 Non-woven Geotextile (42485.4)

Test Results						
	Peak Displacemen (@ 3.0 in.)					
Friction Angle (degrees):	29.0	24.8				
Y-intercept or Adhesion (psf):	148	403				

Shearing occurred at the interface. The peak friction angle regression analysis was adjusted to fit a zero yintercept.

	Test Conditions
Upper Box &	Bottom Ash remolded to 95% of the
	maximum dry density at the optimum
Lower Box	moisture content +2% of 81.0 pcf at 29.2%
Lower Dox	Skaps GE180 non-woven geotextile
Box Dimension	ns: 12"x12"x4"
Interface	Interface soaked and loading applied for
Conditioning:	a minimum of 1 hour prior to shear.
Test Condition	: Wet

Shearing Rate: 0.04 inches/minute

Test Data						
Specimen No.	1	2	3	4	5	
Bearing Slide Resistance (lbs)	9	11	56	103	198	
Normal Stress (psf)	150	300	5000	10000	20000	
Corrected Peak Shear Stress (psf)	118	245	3406	5337	11311	
Corrected Large Displacement Shear Stress (psf)	100	230	3395	5337	9300	
Peak Secant Angle (degrees)	<mark>38.3</mark>	39.2	34.3	28.1	29.5	
Large Displacement Secant Angle (degrees)	33.6	37.4	34.2	28.1	24.9	
Asperity (mils)						

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Interface Friction Test Report

Client:Geosyntec ConsultantsProject:Colstrip Steam Electric StationDate:04-19-2016 to 04-19-2016

TRI Log#: 20132 Test Method: ASTM D5321

John M. Allen, P.E., 04/19/2016

Quality Review/Date

Tested Interface: Skaps GE180 Non-woven Geotextile (42485.4) vs. Solmax 60 mil HDPE Textured Geomembrane (5-21029)

Test Results					
Peak Large (@ 3.0 in.)					
Friction Angle (degrees):	23.1	10.7			
Y-intercept or Adhesion (psf):	0	104			

Shearing occurred at the interface. The peak friction angle regression analysis was adjusted to fit a zero yintercept.

	Test Conditions				
Upper Box &	Skaps GE180 non-woven geotextile				
Lower Box	Solmax 60 mil HDPE textured geomembrane (white side)				
Box Dimensio	ns: 12"x12"x4"				
Interface Conditioning:	Interface soaked and loading applied for a minimum of 1 hour prior to shear.				
Test Condition: Wet					
Shearing Rate: 0.2 inches/minute					

		•				
Test Data						
Specimen No.	1	2	3	4	5	
Bearing Slide Resistance (lbs)	9	11	56	103	198	
Normal Stress (psf)	150	300	5000	10000	20000	
Corrected Peak Shear Stress (psf)	<mark>158</mark>	<mark>128</mark>	1786	3997	8743	
Corrected Large Displacement Shear Stress (psf)	152	111	1069	2023	3869	
Peak Secant Angle (degrees)	46.5	23.1	19.7	21.8	23.6	
Large Displacement Secant Angle (degrees)	45.3	20.4	12.1	11.4	10.9	
Asperity (mils)	14.0	13.4	15.2	12.6	13.2	

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Interface Shear Strength of Geosynthetic Clay Liner by Direct Shear (ASTM D6243)

Client: Geosyntec Consultants

TRI Log #: #REF!

Project: Colstrip Steam Electric Station

Jeffrey A. Kuhn, Ph.D., P.E., 7/11/2016

Analysis & Quality Review/Date

Continuum DN GCL vs. Solmax 60 mil HDPE Textured Geomembrane

1.5

Displacement (inches)

2

2.5

0.5

1

0

Test Results, Linear Regression				
Mohr-Coulomb Parameters		Peak	K	Large Displacement
Friction Angle	Degrees 15.			10.3
Y-intercept or Adhesion	psf 19			117
*3.0 inches				
Test Conditions				
Upper Box	Continuum DG GCL (black side) hydrated under 150 psf for a minimum 24 hours prior to mounting (15GCL002-13G)			
Lower Box	Solmax 60 mil HDPE textured geomemrbrane, black side (5-21029)			
Conditioning	Wet - Interface soaked and loaded at 1 psi/hr to the target stress which was maintained for a minimum of 16 hours prior to shear.			
Shearing Rate	inches/m	inute		0.04

Test Notes

Shearing occurred at the interface at all stresses.

Specimen No.	ecimen No.		1	2	3	4	5
Normal Stress		psf	150	300	5,000	10,000	20,000
Box Edge Dimer	nsion	in	12	12	12	12	8
Bearing Slide Re	esistance	lbs	9	11	56	103	92
Peak	Normal Stress	psf	150	300	5,000	10,000	20,000
	Shear Stress	psf	99	145	1,726	3,309	5,611
	Secant Angle	deg.	33.5	<mark>25.8</mark>	19.0	18.3	15.7
Lorgo	Normal Stress	psf	150	300	5,000	10,000	20,000
Large	Shear Stress	psf	83	136	1,138	1,969	3,723
Displacement	Secant Angle	deg.	28.8	24.3	12.8	11.1	10.5

3

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

Interface Shear Strength of Geosynthetic Clay Liner by Direct Shear (ASTM D6243)

Continuum DN GCL vs.

Client: Geosyntec Consultants

TRI Log #: #REF!

Project: Colstrip Steam Electric Station

Jeffrey A. Kuhn, Ph.D., P.E., 7/11/2016

Analysis & Quality Review/Date

Test Results, Linear Regression								
Mohr-Cou Parame	Peak	ζ.	Large Displacement					
Friction Angle	Degrees	35.7		23.3				
Y-intercept or Adhesion	psf	0		0				
*3.0 inches	*3.0 inches							
Test Conditions								
Upper Box	Continuum DG GCL (white side) hydrated under 150 psf for a minimum 24 hours prior to mounting.							
Lower Box	Paste remolded to 95% of the maximum dry density at the optimum moisture content +2% or 87.4 pcf at 26.8%							
Conditioning	Wet - Interface soaked and loaded at 1 psi/hr to the target stress which was maintained for a minimum of 16 hours prior to shear.							
Shearing Rate	inches/m	inute		0.04				

Test Notes

Shearing occurred at the interface for specimens tested under stresses of 130, 300, and 5000 psf. The GCL sheared internally for specimens tested under normal stresses of 10,000 and 20,000 psf.

Specimen No.		-	1	2	3	4	5
Normal Stress		psf	150	300	5,000	10,000	20,000
Box Edge Dimension		in	12	12	12	12	8
Bearing Slide Re	Bearing Slide Resistance		9	11	56	103	92
Peak	Normal Stress	psf	150	300	5,000	11,085	25,620
	Shear Stress	psf	150	187	3,160	6,278	19,200
	Secant Angle	deg.	45.0	<mark>31.9</mark>	32.3	29.5	36.8
Large Displacement	Normal Stress	psf	150	300	5,000	13,333	32,000
	Shear Stress	psf	141	157	2,721	4,058	14,431
	Secant Angle	deg.	43.2	27.6	28.6	16.9	24.3

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

ATTACHMENT 2

Calculation of Water Depth above Geomembrane

4		
******	***************************************	*******
******	***************************************	*******
**		**
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
**		**
**********	***************************************	*******
*****	*******	*******

PRECIPITATION DATA FILE:	C:\HELP3\c\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\c\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\c\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\c\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\c\DATA1833.D10
OUTPUT DATA FILE:	C:\HELP3\c\OPEN1833.OUT

TIME: 32:47 DATE: 12/10/2015

TITLE: Colstrip, Base Grading, 33.0% slope, 190'

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 2 - LATERAL DRAINAGE LAYER

Page 1

MATERIAL TEX	TURE	NUMBER 0		
THICKNESS	=	18.00	INCHES	
POROSITY	=	0.5780	VOL/VOL	
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT	=	0.0250	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1476	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.20700000	5000E-03	CM/SEC
SLOPE	=	33.00	PERCENT	
DRAINAGE LENGTH	=	190.0	FEET	

LAYER 2

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

	• · · -	
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	5.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	4 - POOR

LAYER 3

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

	-	
THICKNESS	=	0.24 INCHES
POROSITY	=	0.7500 VOL/VOL
FIELD CAPACITY	=	0.7470 VOL/VOL
WILTING POINT	=	0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.30000003000E-08 CM/SEC

LAYER 4

Page 2

TYPE 1 - VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 0THICKNESS= 1200.00 INCHESPOROSITY= 0.5010 VOL/VOLFIELD CAPACITY= 0.2840 VOL/VOL

WILTING POINT	=	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2840 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.999999997000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #31 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 33.% AND A SLOPE LENGTH OF 190. FEET.

SCS RUNOFF CURVE NUMBER	=	97.10	
FRACTION OF AREA ALLOWING RUNOFF	=	0.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	1.652	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	6.936	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.300	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	343.637	INCHES
TOTAL INITIAL WATER	=	343.637	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BILLINGS MONTANA

STATION LATITUDE	=	45.80	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	278	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES

AVERAGE	ANNU	JAL	WIND	SPEED		=	11.30	MPH
AVERAGE	1ST	QUA	ARTER	RELATIVE	HUMIDITY	=	59.00	%
AVERAGE	2ND	QUA	ARTER	RELATIVE	HUMIDITY	=	54.00	%
AVERAGE	3RD	QUA	ARTER	RELATIVE	HUMIDITY	=	47.00	%
AVERAGE	4TH	QUA	ARTER	RELATIVE	HUMIDITY	=	58.00	%

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.97	0.71	1.05	1.93	2.39	2.07
0.85	1.05	1.26	1.16	0.85	0.80

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.90	28.40	33.80	44.60	54.90	64.00
72.30	70.30	59.40	49.30	35.00	27.10

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BILLINGS MONTANA AND STATION LATITUDE = 45.80 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION						
TOTALS	0.96	0.78	0.95	1.77	2.26	2.05
	1.09	1.02	1.23	1.13	0.92	0.82
STD. DEVIATIONS	0.49	0.41	0.48	0.90	0.98	0.81
	0.59	0.66	0.86	0.69	0.59	0.43
RUNOFF						
TOTALS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
STD. DEVIATIONS	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
EVAPOTRANSPIRATION						
TOTALS	0.694	0.490	0.753	1.687	2.045	1.973
	1.234	0.930	1.116	0.961	0.879	0.620
STD. DEVIATIONS	0.242	0.273	0.391	0.703	0.653	0.670
	0.633	0.617	0.793	0.549	0.471	0.259
LATERAL DRAINAGE COLL	ECTED FROM I	LAYER 1				
TOTALS	0.1056	0.0863	0.0864	0.1070	0.1589	0.1614
	0.1634	0.1523	0.1351	0.1304	0.1209	0.1203
STD. DEVIATIONS	0.0503	0.0411	0.0411	0.0448	0.0797	0.0861
	0.0881	0.0831	0.0716	0.0678	0.0597	0.0558
PERCOLATION/LEAKAGE T	HROUGH LAYEI	R 3				
TOTALS	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001
STD. DEVIATIONS	0.0001	0.0000	0.0000	0.0000	0.0001	0.0001
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
PERCOLATION/LEAKAGE T	HROUGH LAYEI	R 4				
TOTALS	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001
STD. DEVIATIONS	0.0001	0.0000	0.0000	0.0000	0.0001	0.0001
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

AVERAGES	OF MONTHL	Y AVERA	GED	DAILY HEA	ADS (INCHE	s)	
DAILY AVERAGE HEAD ON	TOP OF LA	YER 2					
AVERAGES	1.8532 2.8673	1.662 2.672	27 23	1.5169 2.4509	1.9413 2.2886	2.7893 2.1928	2.9267 2.1121
STD. DEVIATIONS	0.8824 1.5459	0.79 1.45	23 89	0.7216 1.2976	0.8126 1.1901	1.3993 1.0821	1.5622 0.9801
******	*******	******	***	*******	<******	*****	******
******	******	******	***	*****	<****	*****	*****
AVERAGE ANNUAL TOTA	LS & (STD	. DEVIA	TIO	NS) FOR YE	ARS 1	THROUGH	I 30
		INCI	HES		CU. FEE	т	PERCENT
PRECIPITATION	 14	4.97	(2.581)	54346	.0	100.00
RUNOFF	(000.000	(0.0000)	0	.00	0.000
EVAPOTRANSPIRATION	1	3.381	(1.7992)	48573	.55	89.378
LATERAL DRAINAGE COLLEC FROM LAYER 1	TED	1.52818	(0.65715)	5547	.285	10.20736
PERCOLATION/LEAKAGE THR LAYER 3	OUGH	0.00138	(0.00074)	5	.012	0.00922
AVERAGE HEAD ON TOP OF LAYER 2	:	2.273 (0.975)			
PERCOLATION/LEAKAGE THR LAYER 4	OUGH	0.00138	(0.00074)	5	.014	0.00923
CHANGE IN WATER STORAGE	(0.061	(1.0067)	220	.10	0.405
*****	*******	******	***	******	*******	******	*******

PEAK DAILY	VALUES FOR YEARS	1 THROUGH	30
		(INCHES)	(CU. FT.)
PRECIPITATION		1.75	6352.500
RUNOFF		0.000	0.000
DRAINAGE COLLECTED F	ROM LAYER 1	0.01306	47.3983
PERCOLATION/LEAKAGE	THROUGH LAYER 3	0.000017	0.0600
AVERAGE HEAD ON TOP	OF LAYER 2	7.104	
MAXIMUM HEAD ON TOP	OF LAYER 2	13.408	
LOCATION OF MAXIMUM (DISTANCE FROM	HEAD IN LAYER 1 DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE	THROUGH LAYER 4	0.000033	0.1189
SNOW WATER		1.43	5192.0435
MAXIMUM VEG. SOIL WA	TER (VOL/VOL)	0.	4405
MINIMUM VEG. SOIL WA	TER (VOL/VOL)	0.	0849
*** Maximum heads	are computed using	McEnroe's equa	tions. ***
Reference: Ma by AS Vo	ximum Saturated De Bruce M. McEnroe, CE Journal of Envi l. 119, No. 2, Mar	pth over Landfi University of ronmental Engin ch 1993, pp. 26	ll Liner Kansas eering 2-270.
******	******	*****	*****

	OPEN1833	3	
FINAL WATER	STORAGE AT END	D OF YEAR 30	
LAYER	(INCHES)	(VOL/VOL)	
1	4.2241	0.2347	
2	0.0000	0.0000	
3	0.1800	0.7500	
4	340.8000	0.2840	
SNOW WATER	0.252		
******	*****	*****	*****

APPENDIX A.4

Global Slope Stability Analysis

consultants

COMPUTATION COVER SHEET

Client: Talen	Project:	Colstrip – EHP J Cell	Project #: ME12	10 Task #: 01
TITLE OF COMPUTATIONS	SLOPE ST	FABILITY EVALUAT	ION	
COMPUTATIONS BY:	Signature	Class	1	12/17/2015 DATE
	Printed National Action Printed Nation	me Chunling Project Eng	Li	
ASSUMPTIONS AND PROCEDU	RES	Duckare	A	
CHECKED BY:	Signature			12/17/2015
(Peer Reviewer)	Printed Na	me R. David Esp	pinoza	DATE
COMPUTATIONS CHECKED BY	Signature	- Dichane	http://	12/17/2015
	Printed National Action Printed Nation	me Zichang Staff Engin	Li	DAIL
COMPUTATIONS BACKCHECKED BY: (Originator	Signature	Clark	L:	12/17/2015 DATE
	Printed Na and Title	me Chunling Project Eng	Li	
APPROVED BY: (PM or Designate)	Signature	Partition	\mathcal{D}	12/17/2015 DATE
()	Printed Nat	me R. David Esp	pinoza	
APPROVAL NOTES:	and Title	Senior Prin	cipal	
REVISIONS (Number and initial al	l revisions)			
NO. SHEET I	DATE	BY	CHECKED BY	APPROVAL

Geosyntec ^D		Written by:	C Li		Date:	12/17/2015		
	consultants		Reviewed by:	R D Espin	oza	Date:	12/17/2015	
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

SLOPE STABILITY EVALUATION

PURPOSE

Cell J of the Effluent Hold Pond (EHP) at the Colstrip Power Plant is currently being redesigned with a new liner/capping system. The purpose of this calculation package is to evaluate the stability of Cell J under current and final condition.

BACKGROUND

A capping system is currently being designed to cap the existing coal combustion residuals (CCRs) waste at Cell J. This capping system will also serve as the liner system for placement of future CCR waste in Cell J. Figure 1 shows the liner system grading plan. According to the Draft Master Plan [Geosyntec, 2015], the future paste disposal will occur sequentially in Cell J, then Cell G and then Cell F. Eventually, these units will be used for dry CCR waste disposal when the plant finishes the conversion from wet disposal to dry disposal (estimated to start from Year 2028). The final grading plan for Cell J is included as Figure 2.

CROSS SECTIONS ANALYZED

Three cross sections, as shown in the plan view in Figure 1, were selected for analysis in this calculation package. The geometry and subsurface stratigraphy for these cross sections were determined from historical documents and the recent site investigation conducted by Geosyntec in 2015. The analyzed cross sections and sources of information are shown in Table 1.

		Written by:	C Li		Date:	12/17/2015		
		Reviewed by:	viewed by: <u>R D Espinoza</u>		Date:	12/17/2015		
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

Table 1. Analyzed Cross Sections and Source of Information

Cross Sections	Representative Area	References
A-A'	Main Dam	 Main dam cross section is based on WAI Stage 2, typical section provided in the <i>Geotechnical Investigation Report</i> <i>for EHP Stage 2 Dam Raise</i> [Womack, 2011]. Stratigraphy inside Cell J is based on Boring GB-1 conducted by Geosyntec in 2015.
B-B'	Saddle Dam	 Saddle dam cross section is based on WAI Stage 2, typical sections provided in the Geotechnical investigation report for EHP Stage 2 Dam raise [Womack, 2011]. Stratigraphy inside Cell J is based on Boring GB-4 conducted by Geosyntec in 2015.
C-C'	Cell G/J Dike	 Stratigraphy inside Cell J is based on Boring GB-4 conducted by Geosyntec in 2015. Stratigraphy inside Cell G is based on cross sections presented in <i>C-Cell Divider Dike Stability Assessment</i> <i>Report</i> by Womack [2014] G/J dike configuration is based on <i>J Cell Phase I</i> <i>Earthworks Construction Drawings</i> by Summit [2014], and recent piezometer installation log for JC-15-07 SP.

LINER SYSTEM DESCRIPTION

The proposed liner system for Cell J is comprised of the following components, from top to bottom:

- 18-inch bottom ash drainage layer;
- Non-woven geotextile protective layer;
- 60-mil HDPE geomembrane;
- Geosynthetic clay liner (GCL);
- CCR paste subgrade.

METHOD

The stability of the pond cross section was evaluated based on limit equilibrium theory using the methods of slices. The computer program SLIDE [Rocscience, 2012] was used to perform the analyses. SLIDE is a 2D slope stability program for evaluating the factor of safety of circular and non-circular failure surfaces in soils. The procedure consists of analyzing numerous potential failure surfaces to find the critical failure surface that renders

		Written by:	C Li		Date:	12/17/2015		
		Reviewed by:	wed by: R D Espinoza		Date:	12/17/2015		
Client:	Talen	Project:	Colstrip F	EHP – Cell J	Project No.:	ME1210	Task No.:	01

the minimum factor of safety (FS) for the slope. The Spencer method [Spencer, 1967] was used in this analysis. In the Spencer method both force and moment equilibrium are satisfied in each slice, the slope of the inter slice forces is assumed constant and parallel to each other.

Numerous potential failure surfaces were analyzed. Both circular and non-circular failure surface were considered for the analysis. During the analysis, the search boundaries were varied to ensure that the most critical surface was captured during the search. For the circular slip surface search, a search grid with 25 horizontal increments and 25 vertical increments was used. For non-circular block failure, the search for critical failure surface was conducted along a defined polyline along the liner system.

SLIDE provides both the minimum FS and a FS contour map for the computation. When the contour lines that contain the minimum FS were not fully closed, the search grid was expanded horizontally or vertically and the analysis performed again. This iterative process ensured that a global FS was calculated, not a local minimum factor of safety.

STABILITY CRITERION

In this analysis, the requirements of the new CCR Rule [Federal Register, 2015] for CCR impoundments are used to evaluate the slope stability. As shown below, the following minimum FSs for different loading conditions, obtained from the new CCR Rule, should be satisfied:

- Static factor of safety under the long-term, maximum storage pool loading condition > 1.5;
- Static factor of safety under the maximum surcharge pool loading condition > 1.4;
- Seismic factor of safety > 1.0;
- Static factor of safety under the end-of-construction loading condition > 1.3.

MATERIAL PROPERTIES

The selection of material properties for the analysis is described below.

<u>G/J Dike</u>

Based on *J Cell Phase I Earthworks Construction Drawings* by Summit [2014], the divider dike between Cells G and J is designed to have bottom ash in the upper 4 ft from dike crest

Geosyntec ^D consultants		Written by:	C Li		Date:	12/17/2015		
		Reviewed by:	R D Espin	R D Espinoza		12/17/2015	5	
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

and structural fill that is comprised of baked shale, fly ash, and/or bottom ash in the lower portion. Based on boring logs conducted for piezometer JC-15-07-SP by Geosyntec in 2015, the structural fill in the lower dike portion mainly classifies as silty clay. The appearance of this structural fill is similar to the dam shell according to the boring logs. Accordingly, the shear strength and unit weight for the G/J dike structural fill is assumed to be similar to dam shell.

Bedrock

Previous slope stability analyses indicate that the bedrock present at the site is consisted of sandstone, claystone, siltstone or baked shale [Bechtel, 1982; WAI, 2011]. Boring investigation conducted by Geosyntec in 2015 did not reveal bedrock at elevation 3,100 feet above mean sea level (ft-msl). For this analysis, the bedrock is conservatively assumed to have the lowest shear strength of all bedrock types from previous investigation.

Aged Fly Ash Paste

Based on the 2015 boring investigation by Geosyntec, the existing aged fly ash paste deposits at 10 ft below the current grades in Cell J has typically high standard penetration test blow counts (SPT-N, 30 to above 50 blows/ft) and show as cemented. The shear strength for the existing fly ash paste is selected based on laboratory test results conducted by WAI [2011].

Future Fly Ash Paste (Fly Ash Slurry)

Future fly ash paste placed in Cell J is expected to have less cementation. It is assumed to have the same material properties as used by Golder [2001] in the intermediate stage analysis. For final condition, it is assumed that sufficient time has allow the fly ash paste to develop cementation and the shear strength parameters for existing fly ash paste are used.

Liner Interface

The most critical interface for the liner system is expected to be that between the geomembrane and the GCL. Interface friction angle between textured HDPE geomembrane and GCL was reported to be between 18 and 37 degrees [Eid and Stark, 1997; and Stark et al. 1998]. From Geosyntec's past experience, interface friction angle may be as low as 13 degrees. Based on this, a thin layer of material is defined in the model to represent the most critical interface. The friction angle of this material is assumed 13 degrees, and the unit weight of this material is assumed based on the bottom ash drainage layer in the liner system.
Geosyntec [▷]		Written by: C Li			Date: 12/17/2015			
	consultan	ts	Reviewed by:	R D Espin	oza	Date:	12/17/2015	
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

WAI [2011] provided summary tables of material properties from their testing and from previous consultants. These tables are included as Appendix A to this calculation package. All other materials present in these cross sections are assumed based on information presented in Appendix A and are summarized in Table 2.

	Effective Shear Strength		Total Shear Strength		Moist Unit	Saturated Unit	
Material	Cohesion, psf	Friction Angle, deg	Cohesion, psf	Friction Angle,	Weight, lb/cu ft	Weight, lb/cu ft	Source
G/J Dike Fill	0	33	750	22.5	125	130	Assumed similar to dam shell
Bottom Ash Fill	675	40	-	-	94	112	Golder [2001]
Dry Ash Fill	0	37.8	-	-	106	116	WAI [2011]
Liner Interface	0	13	-	-	94	112	Assumed from literature and experience
Dam Core	0	28.5	120	27	125	130	Bechtel [1982], WAI [2010]
Dam Shell	0	33	750	22.5	125	130	Bechtel [1982], WAI [2010]
Aged Fly Ash Paste	0	35	0.25*Eff. overburden stress	0	102	102	WAI [2011]
New Fly Ash Paste (fly ash slurry)	700	28	100 psf at top, increase by 9psf/ft with depth, 3000 psf max	-	103	103	Golder [2001]
Alluvium	0	28	0	21	124	124	Bechtel[1982]
Drain	0	35	-	-	130	135	Bechtel[1982]
Dam Fill	0	33	-	-	125	130	Bechtel[1982]
Bedrock	0	28	0	21	130	130	Bechtel[1982]

Table 2. Material Properties

Geosyntec [▷]		Written by: C Li			Date: 12/17/2015			
	consultan	ts	Reviewed by:	R D Espir	noza	Date:	12/17/2015	
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

GROUNDWATER CONDITION

Because a liner system will be installed at Cell J, future fly ash placement is not expected to raise the phreatic surfaces within the dam/dike. For this analysis, it is assumed that the groundwater table in Cell J will be at the bottom of the liner system, and the phreatic surface within the dam/dike will remain at current level.

SEISMICITY

The EHP site is located at latitude 45 degrees, 52 minutes North and longitude 106 degrees 32 minutes West. The peak ground acceleration (PGA) in bedrock with 2% probability of exceedance in 50 years is 0.047g, according to the USGS National Seismic Hazard Maps [USGS, 2008] (see Figure 3). A seismic coefficient of 0.05 is assumed for the pseudo-static seismic slope stability analysis.

CASES ANALYZED

The following cases are analyzed for each of the cross sections in this analysis.

- *Case 1: Intermediate condition with static loading.* For this case, it is assumed that fly ash paste will be placed to elevation 3280 ft-msl. It is conservatively assumed that the fine-grained material will act as undrained.
- *Case 2: Final condition with static loading, short-term.* For this case, it is assumed that dry ash will be placed above elevation 3280 ft-msl, and fly ash paste deposits in lined Cell J has cemented. Fine-grained material is assumed to act undrained.
- *Case 3: Final condition with static loading, long-term.* For this case, it is assumed that all excess pore water pressure has fully dissipated, and drained shear strength applies. Other assumptions are the same as Case 2.
- *Case 4: Final condition with seismic loading.* For this case, a seismic coefficient of 0.05 is applied in the pseudo static analysis. Undrained shear strength is used to account for excess pore water pressure induced during earthquake. Other assumptions are the same as Case 2.

RESULTS OF ANALYSIS

The output of slope stability analyses is included in Appendix B. The calculated Factors of Safety for slope stability are summarized in Table 3. As shown in Table 3, all the FS calculated for the various loading condition exceeds the minimum requirement.

Ge	osynte	C D	Written by:	C Li		Date:	12/17/2015	
	consultan	ts	Reviewed by:	R D Espin	oza	Date:	12/17/2015	
Client:	Talen	Project:	Colstrip I	EHP – Cell J	Project No.:	ME1210	Task No.:	01

Table 3. Calculated Factor of Safety

Cross	Cases	FS (Calculated)	FS (required)
Sections		Circular / Non-Circular	
A-A'	1	1.63/2.07	1.3
	2	1.48/1.72	1.3
	3	1.96/1.93	1.5
	4	1.25/1.43	1.0
B-B'	1	2.16/2.32	1.3
	2	1.68/1.66	1.3
	3	2.16/1.81	1.5
	4	1.43/1.40	1.0
C-C'	1	1.30/1.39	1.3
	2	1.30/1.62	1.3
	3	2.47/1.80	1.5
	4	1.06/1.38	1.0

REFERENCES

- Eid, H.T. and Stark, T.D. (1997). "Shear Behavior of an Unreinforced Geosynthetic Clay Liner," *Geosynthetics International*, Vol. 4, No. 6, pp. 645-659.
- FERC (1991), "Engineering Guidelines for the Evaluation of Hydropower Projects, Chapter 4: Embankment Dams (draft)", accessed on 25 September 2015,
 (http://www.ferc.gov/industries/hydropower/safety/guidelines/eng-guide/chap4-draft.pdf)
- Golder Associates, Inc.(2001), Geotechnical Characterization, Mass Balance, Water Balance, and Conceptual Deposition Plan for Paste Fly Ash Units 3 & 4 Effluent Holding Pond Colstrip Steam Electric Station Colstrip, Montana, June 2001.
- Bechtel (1982), Effluent Holding Pond Design Report: Private Report for Montana Power Co., et al.

Geosyntec [▷]		Written by: C Li			Date: 12/17/2015			
	consultan	ts	Reviewed by:	R D Espin	oza	Date:	12/17/2015	
Client:	Talen	Project:	Colstrip E	EHP – Cell J	Project No.:	ME1210	Task No.:	01

- Kulhawy, F. H., & Mayne, P. W. (1990). *Manual on estimating soil properties for foundation design* (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering
- Rocscience, (2012), "Slide (Version 6.0): A 2D Slope Stability Analysis for Soil and Rock Slopes." Rocscience, Toronto, Canada.
- Stark, T.D., Arellano, D., Evans, W.D., Wilson, V.L., and Gonda, J.M. (1998). "Unreinforced Geosynthetic Clay Liner Case History," *Geosynthetics International*, Vol. 5, No. 5, pp. 521-544.
- United States Geological Survey (2008) Seismic Hazard Maps, (http://earthquake.usgs.gov/hazards/products/conterminous/2008/maps/)
- Womack & Associates, Inc. (2007), Units 1 & 2 Paste Plant Geotechnical Investigation Report: Private Report for PPL Montana, LLC, May 2007.
- Womack & Associates, Inc. (2009), Geotechnical Investigation Report EPA Recommended Corrective Measures at the Colstrip Power Plant UNITS 3 & 4 EHP Saddle Dam: Private Report for PPL Montana, LLC, December 2009.
- Womack & Associates, Inc. (2010), Geotechnical Investigation Report EPA Recommended Corrective Measures at the Colstrip Power Plant UNITS 3 & 4 EHP Main Dam: Private Report for PPL Montana, LLC. February 2010
- Womack & Associates, Inc., January 2011, Geotechnical Investigation Report, CP 102 EHP Dam Raise Project, PPL Montana –Colstrip Power Plant UNITS 3 & 4 EHP Main Dam, Stage 2 Dam Raise – Inboard Embankment Fill, Private Report for PPL Montana, LLC.

FIGURES

LEGEND

EXISTING GRADE CONTOUR (FEET-MSL)
PROPOSED GRADE CONTOUR (FEET-MSL)
EXISTING ROAD / DRIVE
EXISTING STRUCTURE
EXISTING TREELINE

WOTES:

3

BASE GRADES ARE: a) APPROXIMATED FOR CELLS B AND F FROM DESIGN PLANS (HYDROMETRICS, INC., DATE UNKNOWN FOR CELL B, AND 2005 FOR CELL F), b) NORMALIZED FOR CELL H FROM 2012 EXISTING GRADES (SEE NOTE 1 ON FIGURE 1), c) ESTIMATED FOR CELL D, AND d) PROPOSED FOR CELL J (GEOSYNTEC 2014).

CONCEPTUAL BASE GRADING PLAN COLSTRIP SITE 3 ASH PONDS COLSTRIP LANDFILL COLSTRIP, MONTANA

	DATE:	SEPTEMBER 2014
Geosyntec ^o	PROJECT N	IO. ME1132
consultants	DOCUMENT	NO.
consultants	FILE NO.	1132f002
COLUMBIA, MARYLAND	FIGURE NO	. 2

LEGEND

3810	EXISTING GRADE CONTOUR (FEET-MSL)
3290	PROPOSED GRADE CONTOUR (FEET-MSL)
=====	EXISTING ROAD / DRIVE
	EXISTING STRUCTURE
10000000000000000000000000000000000000	EXISTING TREELINE

VOLUME SCHEDULE			
CELL VOLUME (C.Y.)			
В	2,750,000		
С	6,350,000		
F	4,950,000		
Н	3,750,000		
J	8,000,000		
TOTAL	25,800,000		

NOTES:

-

-

PROPOSED CAP GRADES ARE 3% FOR CELLS B, C, F, H AND 3H:1V FOR CELL J.

CONCEPTUAL FINA COLSTRIP SITE COLSTRIP COLSTRIP,	L GRA 3 ASH F LANDFILI MONTAN	DING PLAN Ponds A
	DATE:	SEPTEMBER 2014
Geosyntec ^{1>}	PROJECT N	NO. ME1132

	DATE:	SEPTEMBER 2014
Geosyntec	PROJECT N	0. ME1132
consultants	DOCUMENT	NO.
Consultants	FILE NO.	1132f003
COLUMBIA, MARYLAND	FIGURE NO.	3

Figure 2

3

Two-percent probability of exceedance in 50 years map of peak ground acceleration

Figure 3

APPENDIX A

SUMMARY OF MATERIAL PROPERTIES (Excerpt from WAI[2011])

		1	1		1		1	1	-	1		1 1				1	1	1	1	1	1		1					<u> </u>	1
			1	*	1	_					*			-	Table 7	.2-1 Labora	tory Test R	esults	-		-								
	Soil Sample Orig	gin	· · · · ·		Physica	I Properties	i 		In	Idex Proper	ties				1		CRS Consoli	dation & Perme Coef of	Hydraulic	ults Preconsolidation	In-Situ	T	Effective	Static D Effective	OSS Test Results Normalized Strengt	h Undrained		Proctor	USCS
Soil	Borehole/Test Pit	Sample		Water	Total Uni	it Dry Unit	Degree of	Liquid	Plasticity	Plasticity	Liquidity	% Passing	Initial Void	Compression	Recompression	Recompression	Compression	Consol	Conductivity	Stress	Stress	Overconsolidation	Strength	Cohesion	Ratio	Shear Strength	Standard	Modified	
Name	Source	No.	Depth	Content	Weight	Weight	Saturation	Limit	Index	Limit	Index	No. 200	Ratio	Index	Index	Ratio	Ratio	C _v	k	σ'_{p}	σ'_{vo}	Ratio	φ'	C'	C _u / σ _{'vo}	S _u	OMC Max	Dry OMC Max Dry	Classification
			(ft)	(%)	(pcf)	(pcf)	(%)	LL	PI	PL	LI		eo	C _c	Cr	C'r	C'c	(ft²/day)	(ft/day)	(psf)	(psf)	OCR	(degree)	(psf)	S	(psf)	(%) Densit	/(pcf) (%) Density(pcf)	f)
Clinker Ash	SD-10-P36	U1 U1a	10 - 13	23.3	114.5 120.1	97.4		25	6	19	0.72	50.4																	CL-ML
		U1c	12.65 - 12.80	26.5	121.3	95.9		20	Ŭ		0.12	00.1											26.6	950	0.25				
		U1b	12.80 - 13.00	24.4	121.9	96.1	96.4	25 25	7	18	1.26		0.751	0.301	0.009	0.005	0.172			15,000	800	18.8				2087			
		U1d (INC)	10.96	24.4	124.1	99.8		20			1.20		0.686					1.12	1.71E-04										
Clinker Ash	SD-10-P38	U1	11.5 - 14.5		105.6																								CL
			11.78-11.98	23.5	126.1	102.1		29	10	19	0.45	52.4																	
Clinker Ash	SD-10-P38	U2	15 - 18		114.6																								CL
		U2a	16.18 - 16.36	26.0	125.9	100.0		29	10	19	0.70	55.2																	-
		U2b	17.85 - 18.00	25.0	127.9	102.3	103.7	29	10	19	0.6		0.656							23,500	1,200	19.6				3241			
Clinker Ash Ave				25.0	120.4	98.7	100.1	27.0	8.3	18.7	0.8	52.7	0.711	0.301	0.009	0.005	0.172	1.120	1.71E-04	19,250	1000.0	19.2	26.6	950		2664			CL
Paste	MD-10-P7	U1	10.0 - 12.8		100.9																								ML
		U1a	10.50 - 10.66	45.2	109.5	75.4	00.0	43	8	35	1.28	95.4	1 506	0.200	0.012	0.005	0.150			14.000	400	25.0			0.25	1710			
		U1c (INC)	10.66 - 10.81	52.4 47.2	99.5 90.3	61.3	73.1	40	5	35	3.48		1.596	0.390	0.013	0.005	0.150	0.78	2.80E-05	16,000	400	35.0			0.25	1719			
Paste	MD-10-P8	U1	5.0 - 8.0																										ML
		U1a	6.0-7.5	54.3	101.4	65.7	93.5	48	11	37	1.57		1.578	0.405	0.031	0.0121	0.157			28,000	300	93.3			0.25	2825			
Deste	MD 10 D0	114	10.0 12.0		102.2																								N4L
Pasie	WID-10-P9	U1a	11.65 - 11.90	43.9	103.3	75.8		42	6	36	1.32	95.9																	
		U1b	12.60 - 12.75	52.1 50.8	103.8	68.3	95.6	44	6	38	2.35		1.483	0.474	0.015	0.006	0.191			26,600	500	53.2	35	0	0.25	3004			
		010	12.75 - 12.50	50.0	102.3	00.2																		0	0.23				
Paste Ave				49.4	102.3	68.6	87.9	43.4	7.2	36.2	2.0	95.7	1.600	0.401	0.038	0.014	0.155	0.780	2.80E-05	21,150	400.0	60.5	35	0		2664			ML
Alluvium	SD-09-25P	111/112	285-310	15.4	128.5	111.3		27	12	15	0.03	76.8																	CI
7.00410111	00 00 201	01/02	20.0 01.0	10.4	120.0				16	10	0.00	70.0																	
Fly Ash Borrow	TP-10-4 TP-10-4		3	49.7 43.6		74.2 78.0							1.243	1.974	0.063	0.028	0.88	23.6	1.31E+00	3800	840	4.5					36.6 79	29.3 84.5	
	TP-10-5		3.5	55.5		82.3							1.102	0.801	0.059	0.028	0.381	23.51	7.94E-02	3950	367.5	10.7	37.8	0			10		
	TP-10-5		7	44.8																							33.6 81		
Fly Ash Borrow Ave				48.4	116.0	78.2							1.173	1.387	0.061	0.028	0.631	23.555	6.95E-01	3875.0	603.8	7.6	37.8	0			35.1 80	3 29.3 84.5	

							Tabl	e 8.2.3-1	Soil De	sign Param	eters							
Soil Samp	le Data		Physical I	Properties						Engineerin	g Properties					Pr	octor	
						Undrained	Undrained	Effective	Effective		Ĭ			Hydraulic				
Soil	Report / Test	Dry Unit	Moist Unit	Sat Unit		Strength	Cohesion	Strength	Cohesion	Compression	Recompression	Recompression	Compression	Conductivity	Sta	ndard	Mc	odified
Name	Source	Weight	Weight	Weight	OMC	φ	С	φ'	С'	Index	Index	Ratio	Ratio	k	OMC	Max Dry	OMC	Max Dry
		(pcf)	(pcf)	(pcf)	(%)	(degree)	(psf)	(degree)	(psf)	C _c	Cr	C'r	C'c	(ft/s)	(%)	Density(pcf	(%)	Density(pcf)
Core	Bechtel, 1982	113	125	130	15	27	120	28.5	0	0.1	0.01							
	WAI, 2010													1.50E-07			I	
Shall	Pophtol 1092			120	15	22.5	750	22	0	0.1	0.01							ļ
Shell	WAI 2010	107.5	123.6	130	10	22.5	750		0	0.1	0.01			2 00E-07				<u> </u>
	111, 2010	107.0	120.0											2.002 07				
Drain	Bechtel, 1982	105	130	135	15	35	0	35	0					0.0317				
Clayatana/Siltatana	Pophtol 1092		110	104		21	0	20	0					2 205 09				ļ
Claysione/Silisione	Deciliei, 1902		112	124		21	0	20	0					3.202-00			[
Clinker/Baked Shale	Bechtel, 1982		130	140	16	40	0	40	0					0.17				
Clinker Ash	This Report	99	120.4	125		0	2000	26.6	950	0.301	0.009	0.005	0.0172	1.98E-09				
Alluvium	Bechtel 1982	97	112	124		21	0	28	0	0.1	0.01			4 80E-06				
/ didvidin	Decinici, 1902	51	112	127		21	0	20	0	0.1	0.01			4.002 00				
Sandstone	WAI, 2010	99.8	121	124	22.2			40.1	0					2.40E-05				
Paste	This Report	68.6	102	112		0	1700	35	0	0.401	0.038	0.014	0.155	3.24E-10				
Fly Ash Slurry	WAL C-CW. 09		100	103.4		*	*	28	700									
	Golder, 2001	74												3.28E-07			i	
Fly Ash Borrow	This Report	<mark>78.2</mark>	<mark>105.6</mark>	116	35.1			<mark>37.8</mark>	0	1.387	0.061	<mark>0.028</mark>	0.631	8.04E-06	35.1	80.3	29.3	84.5
	WAI, 2001					22	0											
Bottom Ash Fill	Golder, 2001	86	93.7	112.2	29.3	20.5	3295	40.3	675			0.04	0.23	5.00E-04	29.3	86		
	*	Undrained	strength of fly	ash slurry														
		C top layer	= 100-psf	/£1													<u> </u>	
			ange = 9-psi	/11														
			n = 3000-psi	1			1								1			<u> </u>

APPENDIX B

SLOPE STABILITY ANALYSIS OUTPUT

- 42	Safety	Factor												
-		0.500							-					
00		1.000 1.500			Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ни Туре	Ru
40		2.000			shell		125	130	Mohr-Coulomb	0	33	Water Surface	Custom	
-		2.500			core		125	130	Mohr-Coulomb	0	28.5	Water Surface	Custom	
0		3.500		1.952	Bedrock		130		Mohr-Coulomb	0	28	None		0
375		4.000			aged ash paste deposits		102	102	Mohr-Coulomb	0	35	Water Surface	Custom	
		5.000			dam fill		125	130	Mohr-Coulomb	0	33	Water Surface	Custom	
-		5.500			Liner Interface		94	112	Mohr-Coulomb	0	13	Water Surface	Custom	
3500		6.000+			fly ash fill		106		Mohr-Coulomb	0	37.8	Water Surface	Custom	
-					Aged ash paste above liner		102	102	Mohr-Coulomb	0	35	Water Surface	Custom	
3250		W =				W T		-						
2750														
	-800	-600	-400	-200 () 200	400	600	8	800 100	0	1200	1400		1600
				Project		SLII	DE - An Inte	ractive Slo	ope Stability Pr	ogram				
				Analysis Description										
		35	ience	Drawn By		5	^{cale} 1:2994	Сог	mpany					
1	-			Date	9/29/2015, 4:16:54	I PM	File	Name A-A	final Lo	na terr	n non- circula	r.slim		

Taxa			, ,	5
	Analysis Description			
- Selence	Drawn By	^{Scale} 1:4580	Company	
	Date 9/29/2015, 4:16:54 PM	-	File Name	A-A'_final_ Long term_circular.slim

► 0.05

2500		Material Name	Color	Unit Weight (lbs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
		shell		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	1	
-		core		125	130	Mohr-Coulomb	120	27			Water Surface	Custom	1	
2000		Bedrock		130		Mohr-Coulomb	0	21			None			0
		aged ash paste deposits		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	1	
		dam fill		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	1	
- 00 -		Liner Interface		94	112	Mohr-Coulomb	0	13			Water Surface	Custom	1	
- 12		fly ash fill		106		Mohr-Coulomb	0	37.8			Water Surface	Custom	1	
-		Aged ash paste above liner		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	1	
	-2500	-2000	-1500		-1000	-500	0		500	1	000	1500		1 1
			Project			SLIDE -	An Interac	ctive S	Slope Sta	ability Program	n			
10			Analysis	Description										
	51	<i>sience</i>	Drawn B	У		Scale	1:5786		Company					
SLIDEINTERPRE	ET 6.036		Dale		9/29/2	2015, 4:16:54 PM		/	ne Ndine	A-A'_1	final_ Seismic_	circular.	slim	

-		Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Ru	
-		shell		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom		
007		core		125	130	Mohr-Coulomb	120	27			Water Surface	Custom		
-		Bedrock		130		Mohr-Coulomb	0	21			None		0	
-		aged ash paste deposits		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom		
-		dam fill		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom		
8		Liner Interface		94	112	Mohr-Coulomb	0	13			Water Surface	Custom		
-		fly ash fill		106		Mohr-Coulomb	0	37.8			Water Surface	Custom		
-		Aged ash paste above liner		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom		
-1	500	-1000	-500		0	500	1(000		1500	2000			2500
			Proje	ct		SLIDE	- An Inter	ractive	e Slope S	Stability Progr	am			
	06		Analy	sis Description										
	-	a sience	Draw	n By		Scale	1:5108		Company					
LIDEI	NTERPRET 6.036		Date		9/29	9/2015, 4:16:54 PM			File Name	A-A'_1	final_ Seismic_ n	on- circula	r.slin	า

► 0.05

S	IN	TER	DDE.	Г 6	036

_			(105/115)	(lbs/ft3)		(psi)	(ueg)	Ratio	(psf)			
-	shell		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	
2	core		125	130	Mohr-Coulomb	120	27			Water Surface	Custom	
Ň _	Bedrock		130		Mohr-Coulomb	0	21			None		0
-	aged ash paste deposits		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	
_	dam fill		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	
-	Liner Interface		94	112	Mohr-Coulomb	0	13			Water Surface	Custom	
	fly ash fill		106		Mohr-Coulomb	0	37.8			Water Surface	Custom	
	Aged ash paste above liner		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	
-1500	-1000		-500		0	50)0		1000)	1500	-)
	F	Project			SLIDE - An	Interactiv	/e Slop	be Stabil	lity Program			
	7	Analysis Des	cription									
	t <u>Gience</u>	Drawn By			Scale 1:	3911	Comp	bany				
		Date		9/29/201	5 4·16·54 PM		File N	lame	A_A' final	short term non-	circular sli	m

1.826 **↓** W T _

		Material	Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ни Туре	Hu	Ru		
2750		shel	l		125	130	Mohr-Coulomb	0	33	Water Surface	Custom	1			
		core	!		125	130	Mohr-Coulomb	0	28.5	Water Surface	Custom	1			
		Bedro	ck		130		Mohr-Coulomb	0	28	None			0		
2500		aged ash past	e deposits		102	102	Mohr-Coulomb	0	35	Water Surface	Custom	1			
		dam f	ill		125	130	Mohr-Coulomb	0	33	Water Surface	Custom	1			
-		Liner Inte	erface		94	112	Mohr-Coulomb	0	13	Water Surface	Custom	1			
2250		fly ash	fill		106		Mohr-Coulomb	0	37.8	Water Surface	Custom	1			
		Aged ash paste	above liner		102	102	Mohr-Coulomb	0	35	Piezometric Line 1	Custom	1			
	1750 -1500	-1250	-1000		-750	-500	-250		0	250	5	00		750	1000
			Project				SLIDE - An	Interactiv	ve Slo	pe Stability Progr	am				
			Analysis Descri	ption											
	- SGIE	nce	Drawn By				Scale 1	:3377	Com	pany					
SLIDEI	NTERPRET 6.036		Date		9/25/2	015, 12:20	:39 PM		File I	B-B'_f	inal_Long	-terr	n noi	n_circular.slim	

-		Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru	
2/20		shell		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	1		
-		core		125	130	Mohr-Coulomb	120	27			Water Surface	Custom	1		
-		Bedrock		130		Mohr-Coulomb	0	21			None			0	
2200		aged ash paste deposits		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	1		
-		dam fill		125	130	Mohr-Coulomb	750	22.5			Water Surface	Custom	1		
		Liner Interface		94	112	Mohr-Coulomb	0	13			Water Surface	Custom	1		
		fly ash fill		106		Mohr-Coulomb	0	37.8			Water Surface	Custom	1		
-		Aged ash paste above liner		102	102	Strength=F(overburden)			0.25	0	Water Surface	Custom	1		
-20)0	-1750 -1500		-1250	-1000	-750 -50	0	-250		0	250	500		75	io 1000
				Project		SL	IDE - An I	ntera	ctive Slo	pe Stability Pr	rogram				
				Analysis Description	,										
	-	<i>seienc</i>	e	Drawn By			Scale 1:3	653	Com	pany					
SLIDEINTE	RPRET 6.036		9	Date	ç	9/25/2015, 12:20:39 PM			File	Vame	B-B'_final_Sho	rt-term_c	circul	ar.sli	m

-	Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
-	shell		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
_	core		125	130	Mohr-Coulomb	120	27						Water Surface	Custom	1	
2500	Bedrock		130		Mohr-Coulomb	0	21						None			0
-	aged ash paste deposits		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
-	fly ash slurry		103	103	Undrained	100		FDepth	9	3000			None			0
_	dam fill		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
_	Liner Interface		94	112	Mohr-Coulomb	0	13						Water Surface	Custom	1	
8	Aged ash paste above liner		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
20 20 20	-2500 -2250	-2	000	1750	-1500 -1250	-1	000	-750)	-500		-250	0	250	++++	500
			Projec	ct		SLID)E - Ai	n Interacti	ve Slope	Stabilit	y Progra	ım				
			Analy	sis Description												
	SSIC	n	Drawi	ו By		Sc	ale .	1:3629	Company							
SLIDEIN	TERPRET 6.036		Date		9/25/2015, 12:2	0:39 PM			File Name		B-B'_inte	rmediate_Shor	t-term circular.	slim		

- 3 	Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
8	shell		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
- 28	core		125	130	Mohr-Coulomb	120	27						Water Surface	Custom	1	
-	Bedrock		130		Mohr-Coulomb	0	21						None			0
8	aged ash paste deposits		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
26	fly ash slurry		103	103	Undrained	100		FDepth	9	3000			None			0
-	dam fill		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
8	Liner Interface		94	112	Mohr-Coulomb	0	13						Water Surface	Custom	1	
54	Aged ash paste above liner		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
4-7	-1600 -14	00	-1200		1000 -800	-60	0	-400		-200		0	200	400		
			Project			SLID	E - Ar	Interactiv	ve Slope S	Stability	y Progra	m				
			Analysi	is Description												
	SSIC	70	Drawn	Ву		Sca	^{ale} 1	:2658	Company							
SLIDEINT	ERPRET 6.036		Date		9/25/2015, 12:20	D:39 PM			File Name	B-E	3'_interm	ediate_Short-te	erm non_circula	ar.slim		

3000	Material Name	Color	Unit Weight (lbs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
_	dike fill		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
750	aged ash paste deposits		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
- 21	fly ash slurry		103	103	Undrained	100		FDepth	9	3000			None			0
-	Liner Interface		94	112	Mohr-Coulomb	0	13						Water Surface	Custom	1	
00	fly ash fill		106		Mohr-Coulomb	0	37.8						Water Surface	Custom	1	
25	Aged ash paste above liner		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
-	alluvium		124	124	Mohr-Coulomb	0	21						Water Surface	Custom	1	
-[-250	0		250 500		750		1000	1	250	1500	1750		20(00
			Project			SLID	E - Ar	Interactiv	ve Slope S	Stability	y Progra	m				
			Analysi	is Description												
	- SSIC	n	Drawn	Ву		Sca	^{ale} 1	:3244	Company							
SLIDEIN	TERPRET 6.036		Date		9/25/2015, 12:0	7:38 PM			File Name		C-C'_	final seismic_no	on-circular.slim			

◀ 0.05

1

3250 3500 3500 3750 400	Safety Factor 0.000 0.500 1.000 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000+		₩ ▼														
3000	Material Name	с	Color	Unit Weight (lbs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
	dike fill	[125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
00	aged ash paste depos	sits		102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
275	fly ash slurry	[103	103	Undrained	100		FDepth	9	3000			None			0
	Liner Interface	[94	112	Mohr-Coulomb	0	13						Water Surface	Custom	1	
-	fly ash fill	[106		Mohr-Coulomb	0	37.8						Water Surface	Custom	1	
250	Aged ash paste above	liner [102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
	alluvium	[124	124	Mohr-Coulomb	0	21						Water Surface	Custom	1	
	-500	-250	· · /	0	2	50 500	75)	100	0	1250		1500	1750	2	000	
				Projec	ct		SLIE	DE - A	n Interact	ive Slope	Stabilit	y Progra	am				
				Analy	sis Description												
			n	Analy Draw	rsis Description n By		Sc	ale	1:3215	Company							

3200 3300 3400 3500	0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.500 6.000+		W		1.298							1	W			
3100																ĺ
3100	Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Ни Туре	Hu	Ru
3000 3100	Material Name dike fill	Color	Unit Weight (lbs/ft3) 125	Sat. Unit Weight (lbs/ft3) 130	Strength Type Mohr-Coulomb	Cohesion (psf) 750	Phi (deg) 22.5	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface Water Surface	Hu Type Custom	Hu	Ru
3000 3100	Material Name dike fill aged ash paste deposits	Color	Unit Weight (lbs/ft3) 125 102	Sat. Unit Weight (lbs/ft3) 130 102	Strength Type Mohr-Coulomb Strength=F(overburden)	Cohesion (psf) 750	Phi (deg) 22.5	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio 0.25	Minimum Shear Strength (psf) 0	Water Surface Water Surface Water Surface	Hu Type Custom Custom	Hu 1	Ru
3000 3100 3100	Material Name dike fill aged ash paste deposits fly ash slurry	Color	Unit Weight (Ibs/ft3) 125 102 103	Sat. Unit Weight (lbs/ft3) 130 102 103	Strength Type Mohr-Coulomb Strength=F(overburden) Undrained	Cohesion (psf) 750 100	Phi (deg) 22.5	Cohesion Type FDepth	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio 0.25	Minimum Shear Strength (psf) 0	Water Surface Water Surface Water Surface None	Hu Type Custom Custom	Hu 1 1	Ru 0
2900 3000 3100	Material Name dike fill aged ash paste deposits fly ash slurry Liner Interface	Color	Unit Weight (Ibs/ft3) 125 102 103 94	Sat. Unit Weight (lbs/ft3) 130 102 103 112	Strength Type Mohr-Coulomb Strength=F(overburden) Undrained Mohr-Coulomb	Cohesion (psf) 750 100 0	Phi (deg) 22.5 13	Cohesion Type FDepth	Cohesion Change (psf/ft)	Cutoff (psf) 3000	Vertical Stress Ratio 0.25	Minimum Shear Strength (psf) 0	Water Surface Water Surface Water Surface None Water Surface	Hu Type Custom Custom Custom	Hu 1 1 1	Ru 0
2900 3000 3100 3100	Material Name dike fill aged ash paste deposits fly ash slurry Liner Interface alluvium	Color	Unit Weight (Ibs/ft3) 125 102 103 94 124	Sat. Unit Weight (lbs/ft3) 130 102 103 112 124	Strength Type Mohr-Coulomb Strength=F(overburden) Undrained Mohr-Coulomb Mohr-Coulomb	Cohesion (psf) 750 100 0 0	Phi (deg) 22.5 13 21	Cohesion Type FDepth	Cohesion Change (psf/ft) 9	Cutoff (psf) 3000	Vertical Stress Ratio	Minimum Shear Strength (psf) 0	Water Surface Water Surface Water Surface None Water Surface Water Surface	Hu Type Custom Custom Custom Custom	Hu 1 1 1 1 1	Ru 0
2900 3000 3100 3100	Material Name dike fill aged ash paste deposits fly ash slurry Liner Interface alluvium 	Color	Unit Weight (Ibs/ft3) 125 102 103 94 124 -100	Sat. Unit Weight (lbs/ft3) 130 102 103 112 124	Strength Type Mohr-Coulomb Strength=F(overburden) Undrained Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb 100	Cohesion (psf) 750 100 0 0	Phi (deg) 22.5 13 21	Cohesion Type FDepth 300	Cohesion Change (psf/ft) 9 9	Cutoff (psf) 3000	Vertical Stress Ratio 0.25	Minimum Shear Strength (psf) 0	Water Surface Water Surface Water Surface None Water Surface Water Surface	Hu Type Custom Custom Custom Custom	Hu 1 1 1 1	Ru 0

3200 3400 3600 3600	Safety Factor 0.000 0.500 1.000 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000+				1.390			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1	W				
	on Material Name	Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Cohesion Type	Cohesion Change (psf/ft)	Cutoff (psf)	Vertical Stress Ratio	Minimum Shear Strength (psf)	Water Surface	Hu Type	Hu	Ru
30	dike fill		125	130	Mohr-Coulomb	750	22.5						Water Surface	Custom	1	
	aged ash paste depo	osits	102	102	Strength=F(overburden)						0.25	0	Water Surface	Custom	1	
	fly ash slurry		103	103	Undrained	100		FDepth	9	3000			None			0
-	Liner Interface		94	112	Mohr-Coulomb	0	13						Water Surface	Custom	1	
8																
m m	alluvium		124	124	Mohr-Coulomb	0	21						Water Surface	Custom	1	۱ I
28	alluvium -400		-200	124	Mohr-Coulomb	0	21		400		1 1 1	600	Water Surface	Custom 800	1	